Theory of Computation Fall 2013, Homework # 4

Due: December 23, 2013

- 1. (25 pts) Let $L = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs such that for some input } x$, both M_1 and M_2 halt on $x \}$. Prove that L is r.e. but not recursive.
- 2. (25 pts) Prove that the following language $\{ < M_1, M_2 > | L(M_1) \le_m L(M_2) \}$ is not r.e. (Hint: Reduction from \neg HP.)
- 3. (25 pts) Let A and B be two disjoint languages over alphabet Σ . We say that language C separates A and B if $A \subseteq C$ and $B \subseteq \overline{C}$ (i.e., $B \subseteq (\Sigma^* C)$). Show that any two disjoint co r.e. languages are separable by some recursive language.
- 4. (25 pts) Suppose there are four languages A, B, C, and D. Each of the languages may or may not be recursively enumerable. However, we know the following about them: $A \leq_m B, B \leq_m C$, and $D \leq_m C$. Below are four statements. Indicate whether each one is
 - (a) CERTAIN to be true, regardless of what problems A through D are.
 - (b) MAYBE true, depending on what A through D are.
 - (c) NEVER true, regardless of what A through D are.

Justify your answers.

- (1) A is recursively enumerable but not recursive, and C is recursive.
- (2) A is not recursive, and D is not recursively enumerable.
- (3) If C is recursive, then the complement of D is recursive.
- (4) If C is recursively enumerable, then $B \cap D$ is recursively enumerable.