Theory of Computation Fall 2013, Homework # 2

Due: November 11, 2013

- 1. (25 pts) Instead of using the pumping lemma, use Myhill-Nerode theorem to show $\{ww \mid w \in \Sigma^*\}$ to be non-regular.
- 2. (25 pts) Consider the following two languages. Are they regular? Justify your answer.
 - $L_1 = \{\beta \beta^R \gamma \mid \beta \in \{0,1\}^+, \gamma \in \{0,1\}^*\}$
 - $L_2 = \{\beta \gamma \beta^R \mid \beta \in \{0,1\}^+, \gamma \in \{0,1\}^*\}$

(Here β^R denotes the reversal of β .)

- 3. (25 pts)
 - (a) Let $A = \{1^k y \mid y \in \{0,1\}^*, y \text{ contains at least } k \text{ 1's, for } k \ge 1\}$. Show that A is regular.
 - (b) Let $B = \{1^k y \mid y \in \{0, 1\}^*, y \text{ contains at most } k \text{ 1's, for } k \ge 1\}$. Show that B is not regular.
- 4. (25 pts) Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$, define the relation R_M over the set Σ^* to be xR_My iff $\delta(q_0, x) = \delta(q_0, y), x, y \in \Sigma^*$. Suppose R_M has the following 6 equivalence classes
 - (a) $C_1 = (00)^*$,
 - (b) $C_2 = (00)^* 01$,
 - (c) $C_3 = (00)^* 0$,
 - (d) $C_4 = 0^* 100^*$,
 - (e) $C_5 = (00)^* 1$,
 - (f) $C_6 = 0^* 10^* 1(0+1)^*$.

And L(M) is the union of C_1, C_2 , and C_4 . Draw the state transition diagram of M. Explain how the automaton is constructed.