Theory of Computation Final Exam, Spring 2005

- 1. (15 pts) Prove that the following language is not context-free: $\{a^{(n+1)^2} \mid n \ge 1\}$.
- 2. (15 pts) Prove that $\{a^i b^j c^k \mid j = max\{i, k\}\}$ is not context-free.
- 3. (15 pts). Let A and B be two recursively enumerable (r.e.) sets.
 - (a) Is $A \cap B$ always recursively enumerable? Why?
 - (b) Is A B always recursively enumerable? Why?
 - (c) Is $A \cdot B$ always recursively enumerable? Why? (\cdot denotes concatenation.)
- 4. (15 pts) Let $A, B, C \subseteq \{0, 1\}^*$.
 - (a) Complete the following definition: We say that A is many-one reducible to B, written as $A \leq_m B$, if ...
 - (b) Prove that if $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$
 - (c) Is it true that if $A \leq_m B$ and B is regular, then A must be regular as well? Justify your answer.
- 5. (20 pts) State each of the following terms in a precise manner:
 - (a) Church-Turing Thesis
 - (b) *Rice's Theorem*.
 - (c) Ogden's lemma.
 - (d) Chomsky normal form for context-free grammars
 - (e) 2-counter machines
- 6. (10 pts) Let $L_u = \{ \langle M, w \rangle | \text{ TM } M \text{ accepts } w \}$ and $L = \{ \langle M \rangle | \text{ TM } M \text{ accepts } at \text{ least two distinct words} \}$. Show that $L_u \leq_m L$.
- 7. (10 pts) Show that $\{ \langle M_1, M_2 \rangle | L(M_1) \cap L(M_2) = \emptyset \}$ is not recursively enumerable.