Theory of Computation Final Exam, Spring 2004

- **1.** (15 pts) True or False? (No penalty for wrong answer.)
- 1) O If A is not recursive and B is a regular language, then $\{x \# y \mid x \in A, y \in B, \# \text{ is a symbol not used in A and } B$ is not recursive.
- 2) X {M | M is a TM and L(M) contains at least 3800000 elements} is recursive
- 3) $X \{M \mid M \text{ is a TM and } L(M) \text{ contains at most } 3800000 \text{ elements} \}$ is recursive.
- 4) X If A and B are context-free languages, so is A–B (i.e., the difference of A and B).
- 5) O Every regular language is in P (polynomial time).
- 6) X A \leq m B and B is regular, then A is regular. (Here \leq m denotes the many-one reduction.)
- 7) $O \{ < M > | M \text{ is a DFA and } L(M) \text{ is finite} \}$ is decidable.
- 8) **O** If 3CNF-SAT is in P, then P=NP.
- 9) X Given a PDA M, and a regular expression R, Is L(R)=L(M)?' is decidable.
- 10) \bigcirc {w w^R | w is binary string and w^R is the reverse of w} is in P.
- 11) \bigcirc {<M> | M is a Turing machine that accepts the string 1011} is not recursive.
- 12) X A countably infinite union of recursive sets (i.e., $\bigcup_{i=1...\infty} L_i$, each L_i is recursive) is always r.e.
- 13) O The set of all languages over the alphabet $\{0,1\}$ is uncountable.
- 14) X There is an NP algorithm to determine whether or not two context-free grammars generate the same language.
- 15) $\bigcirc \{a^k b^k c^k d^k e^k f^k \mid k \ge 0\} (\subseteq \{a, b, c, d, e, f\}^*)$ can be accepted by a 2-tape DTM in O(n) time.
- 2. (15 pts) Show the following problem to be NP-complete:

Instance: an undirected graph G = (V,E).

Question: Is there a clique of size $\lceil n/2 \rceil$ (i.e., half of n) in G, where n = |V|, i.e., the number of nodes in V?

(Hint: You may use any of the NP-complete problems discussed in class to do the reduction.)

3. (10 pts) Let G be the following grammar (λ is the empty string)

$$S \longrightarrow aB \mid bA$$

$$A \longrightarrow a \mid aS \mid bAA$$

$$B \longrightarrow \lambda \mid b \mid bS \mid aBB$$

Construct an equivalent CFG in Chomsky Normal Form.

4. (20 pts) Answer whether a language class is closed under an operation by filling in yes (Y), no (N), don't know (?)

No penalty for wrong answer. No proofs are required.

Operation/	Union	Intersection	complement	Concatenation	Kleene Star
language class					(i.e., *)
recursive	Ο	Ο	Ο	Ο	Ο
r.e.	Ο	Ο	X	Ο	Ο
Context-free	0	X	X	Ο	Ο
NP	Ο	0	?	Ο	Ο

5. (20 pts)

- 1. State the pumping lemma for context-free languages.
- 2. Prove that $\{a^p | p = n^2, n \in N\}$ is not context-free.
- 3. Use the pumping lemma as a tool to design an algorithm to decide whether a given context-free grammar G generates a finite set (i.e., L(G) is finite).
- **6.** (**12 pts**) Choosing from among (**D**) **decidable**, (**U**) **undecidable**, (**?**) **unknown**, categorize each of the following decision problems. No proofs are required. No penalty for wrong answer.

Problem / Language Class	Regular	Context Free	recursive	r.e.
$L = \Sigma^*$?	Ο	X	X	X
$\mathbf{L} = \boldsymbol{\phi}$?	Ο	Ο	X	X
$x \in L$, for arbitrary x ?	0	0	Ο	X

7. (8 pts) Prove formally that if $A \leq_m B$, and $B \leq_m C$, the $A \leq_m C$. That is, the \leq_m relation (i.e., the many-one reduction) is transitive.