Basic Recursive Function Theory

- The primitive recursive functions are defined by starting with some base set of functions and then expanding this set via rules that create new primitive recursive functions from old ones.
- The base functions are:
(1) Zero function: $Z(x)=0$
(2) Successor function: $S(x)=x+1$
(3) Projection function: $\pi_{i}^{n}\left(x_{1}, \cdots, x_{n}\right)=x_{i}, 1 \leq j \leq n$
(3) Composition: $h(X)=f\left(g_{1}(X), \cdots, g_{n}(X)\right)$
(5) Primitive Recursion:

$$
\begin{aligned}
& h(X, 0)=f(X) \\
& h(X, S(n))=g(X, h(X, n), n)
\end{aligned}
$$

Some Primitive Recursive Functions

Example $(\operatorname{add}(x, y)=x+y)$

$$
\begin{gathered}
\operatorname{add}(x, 0)=f(x) \\
\operatorname{add}(x, S(n))=g(x, \operatorname{add}(x, n), n)
\end{gathered}
$$

where $f(x)=\pi_{1}(x)=x ; g\left(x_{1}, x_{2}, x_{3}\right)=S\left(\pi_{2}\left(x_{1}, x_{2}, x_{3}\right)\right)=S\left(x_{2}\right)$

Example $(m u l(x, y)=x \times y)$

$$
\begin{gathered}
\operatorname{mul}(x, 0)=f(x) \\
\operatorname{mul}(x, S(n))=g(x, \operatorname{mul}(x, n), n)
\end{gathered}
$$

where $f(x)=0$;
$g\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{add}\left(\pi_{1}\left(x_{1}, x_{2}, x_{3}\right), \pi_{2}\left(x_{1}, x_{2}, x_{3}\right)\right)=\operatorname{add}(x 1, x 2)$

Bounded Minimization

An n-ary predicate P is primitive recursive if its characteristic function $X_{P}: N^{n} \rightarrow\{0,1\}$ is primitive recursive.

Let P be an $(n+1)$-ary primitive recursive predicate and $X \in N^{n}$. The bounded minimization of P is the function $\mu_{y}(y \leq k)(X, y)=\min \{y \mid 0 \leq y \leq k, P(X, y)\}$ if the set is not empty; $=k+1$ otherwise.

FACT: Bounded minimization of a primitive recursive predicate is primitive recursive.

FACT: All the primitive recursive functions are total; that is, for any primitive recursive function $f: N^{k} \rightarrow N$, given k numbers n_{1}, \cdots, n_{k}, the value $f\left(n_{1}, \cdots, n_{k}\right)$ is well defined.

Partial Recursive Functions

Let f be a total function from N^{n+1} to N. The minimization of f is the function defined as follows: $\mu_{y}(X, y)=\min \{y \mid f(X, y)=0\}$

The class of partial recursive functions includes the primitive recursive functions and also functions defined by minimization.

Ackermann's function

- $A(0, y)=y+1$
- $A(x, 0)=A(x-1,1)$
- $A(x, y+1)=A(x-1, A(x, y))$
- $A(0, n)=n+1$
- $A(1, n)=2+(n+3)-3$
- $A(2, n)=2 *(n+3)-3$
- $A(3, n)=2^{n+3}-3$
- $A(4, n)=2^{2^{22^{2}}}-3 \quad$ (a stack of $n+3$ terms)

Ackermann's function is not primitive recursive.

Computability

Turing computable functions \equiv Partial recursive functions

