Basic Recursive Function Theory

- The **primitive recursive functions** are defined by starting with some base set of functions and then expanding this set via rules that create new primitive recursive functions from old ones.
- The base functions are:
 - **1** Zero function: Z(x) = 0
 - 2 Successor function: S(x) = x + 1
 - **3** Projection function: $\pi_i^n(x_1, \dots, x_n) = x_i, 1 \le j \le n$
 - Composition: $h(X) = f(g_1(X), \cdots, g_n(X))$

▲口> ▲圖> ▲注> ▲注> 三連

Some Primitive Recursive Functions

Example
$$(add(x, y) = x + y)$$

 $add(x, 0) = f(x);$
 $add(x, S(n)) = g(x, add(x, n), n)$
where $f(x) = \pi_1(x) = x; g(x_1, x_2, x_3) = S(\pi_2(x_1, x_2, x_3)) = S(x_2)$

Example $(mul(x, y) = x \times y)$ mul(x, 0) = f(x); mul(x, S(n)) = g(x, mul(x, n), n)where f(x) = 0; $g(x_1, x_2, x_3) = add(\pi_1(x_1, x_2, x_3), \pi_2(x_1, x_2, x_3)) = add(x1, x2)$

|山田 | 山田 | 山田 |

Bounded Minimization

An *n*-ary predicate *P* is primitive recursive if its characteristic function $X_P : \mathbb{N}^n \to \{0, 1\}$ is primitive recursive.

Definition (Bounded minimization)

Let P be an (n + 1)-ary primitive recursive predicate and $X \in N^n$. The **bounded minimization** of P is the function $\mu_y(y \le k)(X, y) = min\{y|0 \le y \le k, P(X, y)\}$ if the set is not empty; = k + 1 otherwise.

FACT: Bounded minimization of a primitive recursive predicate is primitive recursive.

FACT: All the primitive recursive functions are total; that is, for any primitive recursive function $f : N^k \to N$, given k numbers n_1, \dots, n_k , the value $f(n_1, \dots, n_k)$ is well defined.

イロン 不通と 不通と 不通と 一項

Partial Recursive Functions

Definition (Minimization)

Let f be a total function from N^{n+1} to N. The **minimization** of f is the function defined as follows: $\mu_y(X, y) = \min\{y|f(X, y) = 0\}$

Definition (Partial recursive function)

The class of **partial recursive functions** includes the primitive recursive functions and also functions defined by minimization.

(人間) システン イラン

Ackermann's function

Definition (Ackermann's function)

•
$$A(0, y) = y + 1$$

•
$$A(x,0) = A(x-1,1)$$

•
$$A(x, y+1) = A(x-1, A(x, y))$$

•
$$A(0, n) = n + 1$$

• $A(1, n) = 2 + (n + 3) - 3$
• $A(2, n) = 2 * (n + 3) - 3$
• $A(3, n) = 2^{n+3} - 3$
• $A(4, n) = 2^{2^{2^{\dots 2}}} - 3$ (a stack of $n + 3$ terms)

l heorem

Ackermann's function is not primitive recursive.

H. Yen (NTUEE)

э

イロト イポト イヨト イヨト

Computability

Theorem

Turing computable functions \equiv Partial recursive functions

<ロ> (日) (日) (日) (日) (日)