
Turing Machines and Decidability/Undecidability

Topics to be covered in Chapters 8 - 9 include:

Turing machines,

Recursive and recursively enumerable languages,

Equivalent models of TMs,

The halting problem,

Reduction and more undecidability results,

Rice’s theorem,

The Post correspondence problem,

Basic recursive function theory, ...

Turing Machines Formal definitions Computability

How a Turing machine works

a a b a b a a a [[

p

`

Finite control

Tape infinite to the right

Each step: In current state p, read current symbol under the
tape head, say a: Change state to q, replace current symbol
by b, and move head left or right.

(p, a)→ (q, b, L/R).

Turing Machines Formal definitions Computability

How a Turing machine works

Special designated accept state t and reject state r . These
states are assumed to be “sink” states.

TM accepts its input by entering state t.

TM rejects its input by entering state r .

TM never falls off the left end of the tape (i.e it always moves
right on seeing ‘`’).

Turing Machines Formal definitions Computability

Turning machines more formally

A Turing machine is a structure of the form

M = (Q,A, Γ, s, δ,`, [, t, r)

where

Q is a finite set of states,

A is the input alphabet,

Γ is the tape alphabet which contains A,

s ∈ Q is the start state,

δ : Q × Γ→ Q × Γ× {L,R} is the (deterministic) transition
relation,

`∈ Γ is the left-end marker.

[∈ Γ is the blank tape symbol.

t ∈ Q is the accept state.

r ∈ Q is the reject state.

Turing Machines Formal definitions Computability

Configurations, runs, etc. of a Turing machine

A configuration of M is of the form (p, y[ω, n) ∈ Q × Γω × N,
which says “M is in state p, with “non-blank” tape contents
y , and read head positioned at the n-th cell of the tape.

Initial configuration of M on input w is (s,` w[ω, 0).

1-step transition of M: If (p, a)→ (q, b, L) is a transition in δ,
and z(n) = a: then

(p, z , n)
1⇒ (q, snb (z), n − 1).

Similarly, if (p, a)→ (q, b,R) is a transition in δ, and
z(n) = a: then

(p, z , n)
1⇒ (q, snb (z), n + 1).

M accepts w if (s,` w[ω, 0)
∗⇒ (t, z , i), for some z and i .

M rejects w if (s,` w[ω, 0)
∗⇒ (r , z , i), for some z and i .

Turing Machines Formal definitions Computability

Language accepted by a Turing machine

The Turing machine M is said to halt on an input if it
eventually gets into state t or r on the input.

Note that M may not get into either state t or r on a
particular input w . In that case we say M loops on w .

The language accepted by M is denoted L(M) and is the set
of strings accepted by M.

A language L ⊆ A∗ is called recursively enumerable if it is
accepted by some Turing machine M.

A language L ⊆ A∗ is called recursive if it is accepted by some
Turing machine M which halts on all inputs.

Turing Machines Formal definitions Computability

Computability and languages

Notion of a function f : N→ N being “computable”
(informally if we can give a “finite recipe” or “algorithm” to
compute f (n) for a given n.)

We say f is computable if we have a TM M that given ` 0n

as input, outputs 0f (n) on its tape, and halts.

View f as a language

Lf = {(n, f (n)) | n ∈ N}.

Then f is computable iff Lf is recursive.

Robustness of TM model Other equivalent models

TM with multiple tapes

a a b a b a a a [[`

p

c a b a b b a a [[`

a b b a b a a c [[`

Finite control

Multiple tapes (say 3), each with its own read head.

Each step: In current state p, read current symbols under the
tape heads, say a, b, c : Change state to q, replace current
symbols by a′, b′, c ′, and move each head left or right.

(p, a, b, c)→ (q, a′, b′, c ′, L/R, L/R, L/R).

Robustness of TM model Other equivalent models

How a TM can simulate a multi-tape TM

Let M be given multi-tape TM. Define a TM M ′ that:

Given input w on its tape, first changes it to configuration:
a b b a b a a ĉ̀
[[[[[[[[̂̀ [[[[[[[[[[̂̀`

(−, s,−,−,−)

Simulates a single step
(p, a, b, c)→ (q, a′, b′, c ′, L/R, L/R, L/R) of M by:

Scan top track to find â, and remember it in its finite control
Similarly scan tracks 2 and 3 and rembember b̂ and ĉ in its
finite control.
Now change to state (−, q, a′, b′, c ′).
Scan track 1 to find â, replace it by a′, move head L/R.
Similarly for tracks 2 and 3.

Robustness of TM model Other equivalent models

TM with two-way infinite tape

a a b a b a a a [[

p

bb[

Finite control

Single two-way infinite tape.

Robustness of TM model Other equivalent models

Simulating a two-way infinite tape

a a b a b a a a [

(p,U/L)

bb[
`

a a a [b b [[[a [[
[[

To simulate, imagine the tape is folded to the right at some
point, and simulate with a tape alphabet Γ× Γ ∪ {`, [}.

Robustness of TM model Other equivalent models

The Church-Turing Thesis

Church-Turing Thesis

The definition of computability based on Turing machines,
captures the “right” notion of computability.

Turing computability coincides with several other notions of
computability proposed based on different models, in the 1930’s:

Post systems (Emil Post)

µ-recursive functions (Gödel, Herbrand)

λ-calculus (Church, Kleene)

Combinatory logic (Curry, Schönfinkel)

Robustness of TM model Other equivalent models

Non-deterministic TM

Similar to TM already defined, except that moves can be
non-deterministic.

M accepts an input w if

(s,` w[ω, 0)
∗⇒ (t, z , i),

for some z and i .

Robustness of TM model Other equivalent models

Simulating a non-deterministic TM by a det TM

Let M be a given non-det TM.

Define a deterministic TM M ′ that accepts the same language
as M.

M ′ uses 3 tapes: for given input, guessed binary string, work
tape to simulate run of M.

a a b b a a a [[`

0 1 0 1 0 [`

a b b a b a a c [[`

â

[[[[

p

Robustness of TM model Other equivalent models

Simulating a non-deterministic TM by a det TM

Deterministic TM M ′ searches the tree representing the run of
M on w , by doing a BFS on the tree.

Enumerates binary strings in lexicographic order on tape 2.

Simulate M on input along the path in tape 2, on tape 3.

Accept (Enter state t) if M ′ enters t in the simulation.

Guaranteed to capture all paths and accept (reject) if the
given non-deterministic TM accepts (rejects).

Robustness of TM model Other equivalent models

2-stack PDA

p a
a

b
a

b
`

a
a

b
a

b
a

a
a

`

The PDA can read the 2 top of stacks, and make a push/pop
move independently on each stack.

A 2-tape TM can easily simulate such a PDA.

Conversely, a 2-stack PDA can simulate a TM.

Robustness of TM model Other equivalent models

Counter Machines

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

a a b a b a a a [[`

p

A 2-counter machine can read the values of its 2 counters, say
c and d , and then make a move (increment/decrement c/d ,
overwrite current symbol, move L/R, and change state).
A TM can easily simulate a 2-counter machine.
Conversely, a 4-counter machine can simulate a 2-stack PDA
(and hence a TM).
A 2-counter machine can simulate a 4-counter machine.

Universal Turing machine Halting Problem Some corollaries

Universal Turing machine

0 1 0 0 1 # 0 0` [1

p

M x

We can construct a TM U that takes the encoding of a TM
M and its input x , and “interprets” M on the input x .

U accepts if M accepts x , rejects if M rejects x , and loops if
M loops on x .

Universal Turing machine Halting Problem Some corollaries

Encoding a TM as a {0, 1}-string

0n10m10k10s10t10r 10u10v 1 0p10a10q10b10 1 0p
′
10a

′
10q

′
10b

′
100 · · · 1 0p

′′
10a

′′
10q

′′
10b

′′
10.

represents a TM M with

states {1, 2, . . . , n}.

Tape alphabet {1, 2, . . . ,m}.

Input alphabet {1, 2, . . . , k} (with k < m).

Start state s ∈ {1, 2, . . . , n}.

Accept state t ∈ {1, 2, . . . , n}.

Reject state r ∈ {1, 2, . . . , n}.

Left-end marker symbol u ∈ {k + 1, . . . ,m}.

Blank symbol v ∈ {k + 1, . . . ,m}.

Each string 0p10a10q10b10 represents the transition
(p, a) → (q, b, L).

Universal Turing machine Halting Problem Some corollaries

Example encoding of TM and its input

Input is encoded as 0a10b10c etc.
What does the following TM do on input 001010?

00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010.

Universal Turing machine Halting Problem Some corollaries

How the universal Turing machine works

0 1 0 0 1 # 0 0` [1

p

M x

0 1 0 0 1 1 0 0` [1

0 0 0 0 1 0 0 0` [1

Use 3 tapes: for input M#x , for current configuration, and
for current state and position of head.

Repeat:

Execute the transition of M applicable in the current config.

Accept if M gets into t state, Reject if M gets into r state.

Universal Turing machine Halting Problem Some corollaries

Halting Problem for Turing machines

Fix an encoding enc of TM’s as above.

Define the language

HP = {enc(M)#enc(x) | M halts on x}.

Universal Turing machine Halting Problem Some corollaries

Undecidability of HP

Theorem (Turing)

The language HP is not recursive.

Universal Turing machine Halting Problem Some corollaries

Proving undecidability of HP

Assume that we have a Turing machine M which decides HP. Then
we can compute the entries of the table below:

ε 0 1 00 01 10 11 000 001 010 011 111 · · ·
Mε L H L L L H H L L L L L · · ·
M0 L L L L L L L L L L L L · · ·
M1 H H L H L H H L L H L H · · ·
M00 L L L L L L L L L L L L · · ·
M01 L H L L L H H L L L L L · · ·
M10 H H L H L H H L L H L H · · ·
M11 L H L L L H H L L L L L · · ·
M000 L L L L L L H L L L H L · · ·
.
.
.

For each x ∈ {0, 1}∗ let Mx denote the TM

M, if x is the encoding of TM M with input alphabet 0, 1.
Mloop otherwise, where Mloop is a one-state Turing machine
that loops on all its inputs.

Universal Turing machine Halting Problem Some corollaries

A TM N that behaves differently from all TM’s

Let us assume we have a TM M that decides HP. Then we can
define a TM N as follows: Given input x ∈ {0, 1}∗, it

runs as M on x#x .

If M accepts (i.e. Mx halts on x), goes to a new “looping”
state l and loops there.

If M rejects (i.e. Mx loops on x), goes to the accept state t ′.

N essentially “complements the diagonal” of the table: Given
input x ∈ {0, 1}∗ it halts iff Mx loops on x .
Consider y = enc(N). Then y cannot occur as any row of the
table since the behaviour of N differs from all rows in the table.
This is a contradiction.

Universal Turing machine Halting Problem Some corollaries

Complement of HP is not r.e.

Fact 1: If L and L are both r.e. then L (and L) must be recursive.

Let M accept L and M ′ accept L.

We can construct a total TM that simulates M and M ′ on
given input, one step at a time.

Accept if M accepts, Reject if M ′ accepts.

Fact 2: HP is recursively enumerable.

Just run the universal TM U on input M#x ; accept iff U
halts (i.e. M accepts or rejects x).

Corollary

The language ¬HP is not even recursively enumerable.

Universal Turing machine Halting Problem Some corollaries

Where HP lies

Regular

HP

DCFL

CFL

Recursive

RE

All languages over A

anbn
anbncn

anbncn

¬HP

More problems about Turing Machines

More decidable/undecidable problems

Problem (a)

Is it decidable whether a given Turing machine has at least 481
states? Assume that the TM is given using the encoding below:

0n10m10k10s10t10r 10u10v 1 0p10a10q10b10 1 0p
′
10a

′
10q

′
10b

′
100 · · · 1 0p

′′
10a

′′
10q

′′
10b

′′
10.

00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010.

Yes, it is.
We can give a TM N which given enc(M)

Counts the number of states in M upto 481.

Accepts if it reaches 481, rejects otherwise.

More problems about Turing Machines

More decidable/undecidable problems

Problem (b)

Is it decidable whether a given Turing machine takes more than
481 steps on input ε without halting?

00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010.

Yes, it is.
We can give a TM N which given enc(M)

Uses 4 tapes: On the 4th tape it writes 481 0’s.

Uses the first 3 tapes to simulate M on input ε, like the
universal TM U.

Blanks out a 0 from 4th tape for each 1-step simulation done
by U.

Rejects if M halts before all 0’s are blanked out on 4th tape,
accepts otherwise.

More problems about Turing Machines

More decidable/undecidable problems

Problem (c)

Is it decidable whether a given Turing machine takes more than
481 steps on some input without halting?

00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010.

Yes, it is.
Check if M runs for more than 481 steps on each input x of length
upto 481. If so accept, else reject.

1 2 3 481 482

a a b a b a a a [[`

More problems about Turing Machines

More decidable/undecidable problems

Problem (d)

Is it decidable whether a given Turing machine takes more than
481 steps on all inputs without halting?

00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010.

Yes, it is.
Check if M runs for more than 481 steps on each input x of length
upto 481. If so accept, else reject.

1 2 3 481 482

a a b a b a a a [[`

More problems about Turing Machines

More decidable/undecidable problems

Problem (e)

Is it decidable whether a given Turing machine moves its head
more than 481 cells away from the left-end marker, on input ε?

00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010.

Yes, it is.
Simulate M on ε for upto m481 · 482 · k steps. If M visits the
482nd cell, accept, else reject.

1 2 3 481 482

a a b a b a a a [[`

More problems about Turing Machines

More decidable/undecidable problems

Problem (f)

Is it decidable whether a given Turing machine accepts the
null-string ε?

No.
If it were decidable, say by a TM N, then we could use N to decide
HP as follows: Define a new machine N ′ which given input M#x ,
outputs the description of a machine M ′ which:

erases its input

writes x on its input tape

Behaves like M on x

Accepts if M halts on x .

N ′ then calls N with input M ′.
N accepts M ′ iff M ′ accepts ε iff M halts on x .

More problems about Turing Machines

Turing machine M ′ for Problem (f)

L(M ′) =

{
A∗ if M halts on x
∅ if M does not halt on x .

More problems about Turing Machines

More decidable/undecidable problems

Problem (g)

Is it decidable whether a given Turing machine accepts any string
at all? That is, is L(M) 6= ∅?

More problems about Turing Machines

More decidable/undecidable problems

Problem (h)

Is it decidable whether a given Turing machine accepts all strings?
That is, is L(M) = A∗?

More problems about Turing Machines

More decidable/undecidable problems

Problem (i)

Is it decidable whether a given Turing machine accepts a finite set?

More problems about Turing Machines

More decidable/undecidable problems

Problem (j)

Is it decidable whether a given Turing machine accepts a regular
set?

Given M and x , build a new machine M ′ that behaves as follows:

1 Saves its input y on tape 2.

2 writes x on tape 1.

3 runs as M on x .
4 if M gets into a halting state, then

M ′ takes back control,
Runs as MR on y ,
(Here MR is any TM that accepts a non-regular language R,
say R = {anbn | n ≥ 0}).
M ′ accepts iff MR accepts.

More problems about Turing Machines

Turing machine M ′ for Problem (j)

L(M ′) =

{
R if M halts on x
∅ if M does not halt on x .

More problems about Turing Machines

More decidable/undecidable problems

Problem (k)

Is it decidable whether a given Turing machine accepts a CFL?

More problems about Turing Machines

More decidable/undecidable problems

Problem (l)

Is it decidable whether a given Turing machine accepts a recursive
set?

Reductions Rice’s theorems

Reductions

Let L ⊆ A∗ and M ⊆ B∗ be two languages. We say L reduces to
M and write L ≤ M iff there exists a computable map
σ : A∗ → B∗ such that

w ∈ L iff σ(w) ∈ M.

A∗ B∗

L

M

σ

σ

Reductions Rice’s theorems

Reductions and recursive/re-ness

Theorem

If L ≤ M then:

1 If M is r.e. then so is L.

2 If M is recursive then so is L.

Or to put it differently:

Theorem

If L ≤ M then:

1 If L is not r.e. then neither is M.

2 If L is not recursive then neither is M.

Reductions Rice’s theorems

Examples of reductions

Let L be the language {M | M accepts ε}. Then

HP ≤ L.

Describe a computable map σ which witnesses the reduction.

Hence, since HP is undecidable (i.e. not recursive) so is L.

Reductions Rice’s theorems

Examples of reductions

Let L be the language {M | M accepts a regular language}. Then

¬HP ≤ L.

Describe a computable map σ which witnesses the reduction.

Hence, since ¬HP is undecidable (i.e. not recursive) so is L.

In fact, since ¬HP is not r.e., we can say that L is not r.e..

Reductions Rice’s theorems

Rice’s theorem

Theorem (Rice)

Any non-trivial property of r.e. languages is undecidable.

Theorem (Rice)

Any non-monotone property of r.e. languages is not even
recursively enumerable.

Reductions Rice’s theorems

Properties of languages

A property P of languages over an alphabet A is a subset of
languages over A.

RE languages

Languages over A

P Property P

Reductions Rice’s theorems

Non-trivial and montone properties

A property P is a non-trivial property of r.e. languages, if
there is at least one r.e. language L satisfying P, and another
L′ not satisfying P.

E.g. “is empty” is non-trivial
“is not accepted by a TM” is trivial.

A property P of languages is monotone (w.r.t r.e. languages)
if for all r.e. sets A and B, whenever A ⊆ B and P(A), we
have P(B).

IOW, P is monotone if whenever a set has the property, then
all supersets of that set have it as well.

“is infinite” is monotone,
“L(M) is finite” is not monotone.

Reductions Rice’s theorems

Rice’s theorems

For a property P, we define

LP = {M | L(M) satisfies P}.

Theorem (Rice)

Any non-trivial property of r.e. languages is undecidable. That is,
if P is a non-trivial property of r.e. languages, then the language
LP is not recursive.

Theorem (Rice)

Any non-monotone property of r.e. languages is not even
recursively enumerable. That is, if P is a non-monotone property
of r.e. languages, then the language LP is not even recursively
enumerable.

Reductions Rice’s theorems

Proof of Rice’s Theorem 1

Let P be a non-trivial property of r.e. languages. Then there
are TM’s K and T such L(K) satisfies P and L(T) does not
satisfy P.

We show that LP = {M | L(M) satisfies P} is not recursive.

Case 1: If ∅ satisfies P. We reduce HP to LP .

Given M#x , construct a machine M ′ = σ(M#x) that on
input y

saves y on a separate track
writes x on its tape
runs as M on input x
if M halts on x , M ′ runs as K on y and accepts iff K accepts.

L(M ′) =

{
L(K) if M halts on x
∅ if M does not halt on x .

Reductions Rice’s theorems

Proof of Rice’s Theorem 2

Let P be a non-monotone property of r.e. sets.

Then there are TM’s K and T such that L(K) ⊆ L(T) and
L(K) satisifes P but L(T) does not.

We show ¬HP ≤ LP .

Given M#x output the description of M ′ that

Given input y on Tape 1.
Copies y on Tape 2, writes x on Tape 3
Run (in an interleaved fashion) as M on x , K on y , and T on
y .
accept iff either

K accepts y , or,
M halts on x and T accepts y .

Reductions Rice’s theorems

Proof of Rice’s Theorem 2

Notice that:

L(M ′) =

{
L(K) if M does not halt on x
L(T) if M halts on x .

	Turing Machines
	Formal definitions
	Computability
	tm-equivalent-models.pdf
	Robustness of TM model
	Other equivalent models

	tm-halting.pdf
	Universal Turing machine
	Halting Problem
	Some corollaries

	tm-more-undecidable.pdf
	More problems about Turing Machines

	tm-reductions-rice.pdf
	Reductions
	Rice's theorems

	Chap-TM.pdf
	Turing Machines and Decidability/Undecidability

