
NPDA, CFG equivalence

Theorem

A language L is recognized by a NPDA iff L is described by a CFG.

Must prove two directions:

(⇒) L is recognized by a NPDA implies L is described by a CFG.

(⇐) L is described by a CFG implies L is recognized by a NPDA.

H. Yen (NTUEE) 1 / 4



CFG ⇒ NPDA

Assume the given CFG is in Chomsky Normal Form. The first transition of
the PDA replaces the bottom-of-stack-symbol of the PDA by the start
symbol of the grammar.

For each CFG rule ”A→ BC ” replace the top-of-stack-symbol A by
BC using an ε transition,

For each CFG rule ”A→ a” pop the top-of-stack-symbol A upon
reading an a.

PDA accepts by empty stack.

H. Yen (NTUEE) 2 / 4



NPDA ⇒ CFG
Let M = (Q,Σ, Γ, δ, q0,⊥,F ) be a PDA.
Main idea: Each nonterminal of the constructed CFG is of the form
[p,X , q], where p, q ∈ Q and X ∈ Γ such that

[p,X , q]
∗

=⇒ w ⇔ δ̂(p,w ,X ) = (q, ε, ε)

For each (q1,Y1Y2...Yk) ∈ δ(p, a,X ), include:
[p,X , q]→ a[q1,Y1, q2][q2,Y2, q3] · · · [qk−1,Yk−1, qk ][qk ,Yk , q],
for all q2, ..., qk , q ∈ Q.

H. Yen (NTUEE) 3 / 4



Ogden’s Lemma for CFLs

Theorem

If L is a context-free language, then there exists an integer l such that for
any u ∈ L with at least l positions marked, u can be written as u = vwxyz
such that

1 x and at least one of w or y both contain a marked position;

2 wxy contains at most l marked positions; and,

3 vwmxymz ∈ L for all m ∈ N.

Consider language {aibjckd l | i = 0 or j = k = l}, for which the
classical PL fails (why?).

H. Yen (NTUEE) 4 / 4



Summary of Decision Properties

As usual, when we talk about a CFL we really mean a representation
for the CFL, e.g., a CFG or a PDA accepting by final state or empty
stack

There are algorithms to decide if:
1 String w is in CFL L.

2 CFL L is empty.

3 CFL L is infinite.

H. Yen (NTUEE) 1 / 18



Non-Decision Properties

Many questions that can be decided for regular sets cannot be
decided for CFLs.

Example: Are two CFLs the same?

Example: Are two CFLs disjoint?

Need theory of Turing machines and decidability to prove no
algorithm exists.

H. Yen (NTUEE) 2 / 18



Testing Emptiness

We already did this.

We learned to eliminate variables that generate no terminal string.

If the start symbol is one of these, then the CFL is empty; otherwise
not.

H. Yen (NTUEE) 3 / 18



Testing Membership

Want to know if string w is in L(G ).

Assume G is in CNF.
I Or convert the given grammar to CNF.

I w = ε is a special case, solved by testing if the start symbol is nullable.

Algorithm (CYK ) is a good example of dynamic programming and
runs in time O(n3), where n = |w |.

H. Yen (NTUEE) 4 / 18



CYK Algorithm

Let w = a1...an.

We construct an n-by-n triangular array of sets of variables.

Xij = {variables A | A ∗⇒ ai ...aj}.

Induction on j − i + 1. The length of the derived string.

Finally, ask if S is in X1n.

H. Yen (NTUEE) 5 / 18



CYK Algorithm V (2)

Basis: Xii = {A | A→ ai is a production }.
Induction: Xij = {A | there is a production A→ BC and an
integer k, i < k < j ,B ∈ Xik ,C ∈ Xk+1,j}.

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa

—————————

H. Yen (NTUEE) 6 / 18



Example (cont’d)

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa

———————-

H. Yen (NTUEE) 7 / 18



Example (cont’d)

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa

H. Yen (NTUEE) 8 / 18



Example (cont’d)

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa

H. Yen (NTUEE) 9 / 18



Testing Infiniteness

The idea is essentially the same as for regular languages.

Use the pumping lemma constant n.

If there is a string in the language of length between n and 2n − 1,
then the language is infinite; otherwise not.

Lets work this out in class.

H. Yen (NTUEE) 10 / 18



Closure Properties of CFLs

CFLs are closed under union, concatenation, and Kleene closure.

Also, under reversal, homomorphisms and inverse homomorphisms.

But not under intersection or difference.

H. Yen (NTUEE) 11 / 18



Closure of CFLs Under Reversal

If L is a CFL with grammar G, form a grammar for LR by reversing
the right side of every production.

Example: Let G have S → 0S1 | 01.

The reversal of L(G ) has grammar S → 1S0 | 10.

H. Yen (NTUEE) 12 / 18



Closure of CFLs Under Homomorphism

Let L be a CFL with grammar G .

Let h be a homomorphism on the terminal symbols of G .

Construct a grammar for h(L) by replacing each terminal symbol a by
h(a).

Example

G has productions S → 0S1 | 01. h is defined by h(0) = ab, h(1) = ε.
h(L(G )) has the grammar with productions S → abS | ab.

H. Yen (NTUEE) 13 / 18



Closure of CFLs Under Inverse Homomorphism

Here, grammars don’t help us.

But a PDA construction serves nicely.

Intuition: Let L = L(P) for some PDA P.

Construct PDA P ′ to accept h−1(L).

P ′ simulates P, but keeps, as one component of a two-component
state a buffer that holds the result of applying h to one input symbol.

H. Yen (NTUEE) 14 / 18



Construction of P ′

States are pairs [q, b], where:
1 q is a state of P.
2 b is a suffix of h(a) for some symbol a.

Thus, only a finite number of possible
values for b.

Stack symbols of P ′ are those of P.

Start state of P ′ is [q0, ε].

Input symbols of P ′ are the symbols to
which h applies.

Final states of P ′ are the states [q, ε] such
that q is a final state of P.

H. Yen (NTUEE) 15 / 18



Transitions of P ′

1 δ′(([q, ε], a,X ) = {([q, h(a)],X )} for any input symbol a of P ′ and
any stack symbol X .

I When the buffer is empty, P ′ can reload it.

2 δ′([q, bw ], ε,X ) contains ([p,w ], α) if δ(q, b,X ) contains (p, α),
where b is either an input symbol of P or ε.

I Simulate P from the buffer.

H. Yen (NTUEE) 16 / 18



Intersection with a Regular Language

Intersection of two CFL’s need not be
context free.

But the intersection of a CFL with a
regular language is always a CFL.

Proof involves running a DFA in parallel
with a PDA, and noting that the
combination is a PDA. (PDAs accept by
final state.)

H. Yen (NTUEE) 17 / 18



Formal Construction

Let the DFA A have transition function δA.

Let the PDA P have transition function δP .

States of combined PDA are [q, p], where q is a state of A and p a
state of P.

δ([q, p], a,X ) contains ([δA(q, a), r ], α) if δP(p, a,X ) contains (r , α).
Note a could be ε, in which case δA(q, a) = q.

Accepting states of combined PDA are those [q, p] such that q is an
accepting state of A and p is an accepting state of P.

Easy induction: ([q0, p0],w ,Z0)
∗
` ([q, p], ε, α) if and only if

δA(q0,w) = q and in P : (p0,w ,Z0)
∗
` (p, ε, α).

H. Yen (NTUEE) 18 / 18


