
Pushdown Automata Definitions Exercises

Outline

1 Pushdown Automata

2 Definitions

3 Exercises

Pushdown Automata Definitions Exercises

Pushdown Automata + CFG: history

CFG’s were introduced by Noam Chomsky in 1956.

Oettinger introduced PDA’s for parsing applications in 1961.

Chomsky, Schutzenberger, and Evey showed equivalence of
CFG’s and PDA’s in 1962.

Pushdown Automata Definitions Exercises

How a PDA works

1

a a b a b a a b

⊥

p

b a b a a b a b a a b

⊥

q

b a b

Z Z
Yk

Y1
Y2

X

Each step of the PDA looks like:

Read current symbol and advance head;

Read and pop top-of-stack symbol

Push in a string of symbols on the stack.

Change state.

Each transition Looks like

(p, a,X) → (q,Y1Y2 · · ·Yk).

Pushdown Automata Definitions Exercises

Acceptance

Empty stack Final State

a a b a b a a b

p

b a b a a b a b a a b

⊥

f

b a b

Z
Y

Y

X

Accept input if

Input is consumed and stack is empty (Acceptance by “Empty
Stack”)

Or, input is consumed and PDA is in a final state (Acceptance
by “Final State”).

Pushdown Automata Definitions Exercises

Example PDA

Example PDA for {anbn | n ≥ 0}

(s, ǫ,⊥) → (s, ǫ)
(s, a,⊥) → (p,A)
(p, a,A) → (p,AA)
(p, b,A) → (q, ǫ).
(q, b,A) → (q, ǫ).

Pushdown Automata Definitions Exercises

Example PDA

Example PDA for {anbn | n ≥ 0}

(s, ǫ,⊥) → (s, ǫ)
(s, a,⊥) → (p,A)
(p, a,A) → (p,AA)
(p, b,A) → (q, ǫ).
(q, b,A) → (q, ǫ).

Illustrate run on input “aaabbb”.

Pushdown Automata Definitions Exercises

Example PDA

Example PDA for {anbn | n ≥ 0}

(s, ǫ,⊥) → (s, ǫ)
(s, a,⊥) → (p,A)
(p, a,A) → (p,AA)
(p, b,A) → (q, ǫ).
(q, b,A) → (q, ǫ).

Illustrate run on input “aaabbb”.

What happens on input “aaabbbb”?

Pushdown Automata Definitions Exercises

PDA’s more formally

A Pushdown Automaton is a structure of the form

M = (Q,A,Γ, s, δ,⊥,F)

where

Q is a finite set of states,

A is the input alphabet,

Γ is the stack alphabet,

s ∈ Q is the start state,

δ ⊆fin Q × (A ∪ {ǫ}) × Γ × Q × Γ∗ is the (non-deterministic)
transition relation,

⊥ ∈ Γ is the bottom-of-stack symbol,

F ⊆ Q is the set of final states.

Pushdown Automata Definitions Exercises

Configurations, runs, etc. of a PDA

A configuration of M is of the form (p, u, γ) ∈ Q × A∗ × Γ∗,
which says “A is in state p, with unread input u, and stack
contents γ”.

Initial configuration of M on input w is (s,w ,⊥).

1-step transition of M: If (p, a,X) → (q, α) is a transition in
δ, then

(p, au,Xβ)
1
⇒ (q, u, αβ).

Similarly, if (p, ǫ,X) → (q, α) is a transition in δ, then

(p, u,Xβ)
1
⇒ (q, u, αβ).

M accepts w by empty stack if (s,w ,⊥)
∗

⇒ (q, ǫ, ǫ).

M accepts w by final state if (s,w ,⊥)
∗

⇒ (f , ǫ, γ) for some
f ∈ F .

Language accepted by M is denoted L(M).

Pushdown Automata Definitions Exercises

Exercise

Design PDA’s for the following languages:

Balanced Parenthesis

{a, b}∗ − {ww | w ∈ {a, b}∗}.

Recap of Pushdown Automata Equivalence construction

Outline

1 Recap of Pushdown Automata

2 Equivalence construction

Recap of Pushdown Automata Equivalence construction

How a PDA works

1

a a b a b a a b

⊥

p

b a b a a b a b a a b

⊥

q

b a b

Z Z
Yk

Y1
Y2

X

Each step of the PDA looks like:
Read current symbol and advance head;
Read and pop top-of-stack symbol
Push in a string of symbols on the stack.
Change state.

Each transition Looks like

(p, a,X)→ (q,Y1Y2 · · ·Yk).

Recap of Pushdown Automata Equivalence construction

Acceptance

Empty stack Final State

a a b a b a a b

p

b a b a a b a b a a b

⊥

f

b a b

Z
Y
Y
X

Accept input if

Input is consumed and stack is empty (Acceptance by “Empty
Stack”)

Or, input is consumed and PDA is in a final state (Acceptance
by “Final State”).

Recap of Pushdown Automata Equivalence construction

Equivalence of acceptance criteria

Claim

Given a PDA M that accepts by Final State we can give a PDA
M′ that accepts by Empty Stack such that L(M′) = L(M).

Conversely, given a PDA M that accepts by Empty Stack we
can give a PDA M′ that accepts by Final State such that
L(M′) = L(M).

In fact given a PDA M we can construct a PDA M′ that accepts the
same language as M, by both acceptance criteria.

Recap of Pushdown Automata Equivalence construction

From Final State to ES/FS

What is the problem in doing this?

Recap of Pushdown Automata Equivalence construction

From Final State to ES/FS

What is the problem in doing this?

M may reject an input by emptying its stack.

Recap of Pushdown Automata Equivalence construction

From Final State to ES/FS

What is the problem in doing this?

M may reject an input by emptying its stack.

Let M = (Q ,A , Γ, s, δ,⊥,F).

Define M′ = (Q ∪ {s′, t},A , Γ ∪ {y}, s′, δ′,y, {t}), where δ′ is δ
plus the transitions:

(s′, ǫ,y) → (s,⊥y)
(s, a,⊥) → (p,A)
(f , ǫ,X) → (t ,X) for X ∈ Γ ∪ {y}
(t , ǫ,X) → (t , ǫ) for X ∈ Γ ∪ {y}.

Argue that if w ∈ L(M) then w ∈ L(M′).

Argue that if w ∈ L(M′) then w ∈ L(M).

Recap of Pushdown Automata Equivalence construction

From Empty Stack to ES/FS

Let M = (Q ,A , Γ, s, δ,⊥).

Define M′ = (Q ∪ {s′, t},A , Γ ∪ {y}, s′, δ′,y, {t}), where δ′ is δ
plus the transitions:

(s′, ǫ,y) → (s,⊥y)
(q, ǫ,y) → (t ,y)
(t , ǫ,y) → (t , ǫ).

Argue that if w ∈ L(M) then w ∈ L(M′).

Argue that if w ∈ L(M′) then w ∈ L(M).

From CFG to PDA

Outline

1 From CFG to PDA

From CFG to PDA

CFG = PDA

Theorem (Chomsky-Evey-Schutzenberger)

The class of languages definable by Context-Free Grammars and
Pushdown Automata coincide.

From CFG to PDA

From CFG to PDA

Leftmost derivation: A derivation in which at each step the
left-most non-terminal is rewritten.

CFG G4

S → (S) | SS | ǫ.

Leftmost derivation in G4:

S

From CFG to PDA

From CFG to PDA

Leftmost derivation: A derivation in which at each step the
left-most non-terminal is rewritten.

CFG G4

S → (S) | SS | ǫ.

Leftmost derivation in G4:

S ⇒ (S)

From CFG to PDA

From CFG to PDA

Leftmost derivation: A derivation in which at each step the
left-most non-terminal is rewritten.

CFG G4

S → (S) | SS | ǫ.

Leftmost derivation in G4:

S ⇒ (S)
⇒ (SS)

From CFG to PDA

From CFG to PDA

Leftmost derivation: A derivation in which at each step the
left-most non-terminal is rewritten.

CFG G4

S → (S) | SS | ǫ.

Leftmost derivation in G4:

S ⇒ (S)
⇒ (SS)
⇒ (SSS)

From CFG to PDA

From CFG to PDA

Leftmost derivation: A derivation in which at each step the
left-most non-terminal is rewritten.

CFG G4

S → (S) | SS | ǫ.

Leftmost derivation in G4:

S ⇒ (S)
⇒ (SS)
⇒ (SSS)
⇒ ((S)SS)

From CFG to PDA

From CFG to PDA

Leftmost derivation: A derivation in which at each step the
left-most non-terminal is rewritten.

CFG G4

S → (S) | SS | ǫ.

Leftmost derivation in G4:

S ⇒ (S)
⇒ (SS)
⇒ (SSS)
⇒ ((S)SS)
⇒ ((SS)SS)

From CFG to PDA

From CFG to PDA

Leftmost derivation: A derivation in which at each step the
left-most non-terminal is rewritten.

CFG G4

S → (S) | SS | ǫ.

Leftmost derivation in G4:

S ⇒ (S)
⇒ (SS)
⇒ (SSS)
⇒ ((S)SS)
⇒ ((SS)SS)
⇒ (((S)S)SS)

From CFG to PDA

From CFG to PDA

Leftmost derivation: A derivation in which at each step the
left-most non-terminal is rewritten.

CFG G4

S → (S) | SS | ǫ.

Leftmost derivation in G4:

S ⇒ (S)
⇒ (SS)
⇒ (SSS)
⇒ ((S)SS)
⇒ ((SS)SS)
⇒ (((S)S)SS)
⇒ ((()S)SS)

From CFG to PDA

From CFG to PDA

Leftmost derivation: A derivation in which at each step the
left-most non-terminal is rewritten.

CFG G4

S → (S) | SS | ǫ.

Leftmost derivation in G4:

S ⇒ (S)
⇒ (SS)
⇒ (SSS)
⇒ ((S)SS)
⇒ ((SS)SS)
⇒ (((S)S)SS)
⇒ ((()S)SS)
⇒ ((())SS)

From CFG to PDA

From CFG to PDA

Leftmost derivation: A derivation in which at each step the
left-most non-terminal is rewritten.

CFG G4

S → (S) | SS | ǫ.

Leftmost derivation in G4:

S ⇒ (S)
⇒ (SS)
⇒ (SSS)
⇒ ((S)SS)
⇒ ((SS)SS)
⇒ (((S)S)SS)
⇒ ((()S)SS)
⇒ ((())SS)
⇒ ((())(S)S)
⇒ ((())()S) ⇒ ((())()).

From CFG to PDA

From CFG to PDA

Let G = (N,A ,S ,P) be a CFG. Assume WLOG that all rules of G
are of the form

X → cB1B2 · · ·Bk

where c ∈ A ∪ {ǫ} and k ≥ 0.

Idea: Define a PDA M that simulates a leftmost derivation of
G.

Define M = ({s},A ,N, s, δ,⊥) where δ is given by:

(s, c,X) → (s,B1B2 · · ·Bk),

whenever X → cB1B2 · · ·Bk is a production in G.

From CFG to PDA

From PDA to CFG

First show that we can go over to a PDA M′ with single state.

Then simulate M′ by a CFG.

From CFG to PDA

From PDA to single-state PDA

Let M = (Q ,A , Γ, s, δ,⊥, {t}) be the given PDA.

Define M′ = ({u},A ,Q × Γ × Q , u, δ′, (s,⊥, t), {u}), where δ′ is
given by

(u, c, (p,A , qk))→ (u, (q0B1q1)(q1B2q2) · · · (qk−1Bk qk))

whenever (p, c,A)→ (q, (B1B2 · · ·Bk)) is a transition of M. In
particular:

(u, c, (p,A , q)) → (u, ǫ)

if (p, c,A)→ (q, ǫ) is a transition of M.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Outline

1 Deterministic PDA’s

2 Complementing DPDA’s

3 Closure properties of DCFL’s

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Deterministic PDA’s

a a b a b a a b

⊥

X

X

Y

X
q

b a ⊣

A PDA with restrictions that:
At most one move possible in any configuration.

For any state p, a ∈ A , and X ∈ Γ: at most one move of the
form (p, a,X)→ (q, γ) or (p, ǫ,X)→ (q, γ).
Effectively, a DPDA must see the current state, and top of
stack, and decide whether to make ǫ-move or read input and
move.

Accepts by final state.
We need right-end marker “⊣” for the input.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Example DPDA

Example DPDA for {anbn | n ≥ 0}

(s, a,⊥) → (p,A⊥)
(p, a,A) → (p,AA)
(p, b ,A) → (q, ǫ)
(q, b ,A) → (q, ǫ)
(q, ⊣,⊥) → (t ,⊥)
(s, ⊣,⊥) → (t ,⊥).

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

DCFL’s are closed under complementation

Theorem (Closure under complementation)

The class of languages definable by Deterministic Pushdown
Automata (i.e. DCFL’s) is closed under complementation.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Problem with complementing a DPDA

Try flipping final and non-final states: Problems?

⊣

Loops denote an infinite sequence of ǫ-moves.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Desirable form of DPDA

⊣

r ′

f ′

Now we can make r ′ unique accepting state, to accept
complement of M.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Construction - Step 1

Let M = (Q ,A , Γ, s, δ,⊥,F) be given DPDA. First construct DPDA
M′ which

Does not get stuck due to no transition or stack empty.

Has only “sink” final states.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Construction - Step 1

Define M′ = (Q ∪ Q′ ∪ {s1, r , r ′},A , Γ ∪ {y}, s1, δ
′,y,F ′) where

Q′ = {q′ | q ∈ Q} and F ′ = {f ′ | f ∈ F}.
δ′ is obtained from δ as follows:

Assume M is “complete” (does not get stuck due to no
transition). (If not, add a dead state and add transitions to it.)
Make sure M′ never empties its stack, keep track of whether
we have seen end of input (primed states) or not (unprimed
states):

(s1, ǫ,y) → (s,⊥y)
(p, ǫ,y) → (r ,y) (p ∈ Q)
(p′, ǫ,y) → (r ′,y) (p′ < F ′)
(p, ⊣,X) → (q′, γ) if (p, ⊣,X)→ (q, γ) ∈ δ.
(p′, ǫ,X) → (q′, γ) if (p, ǫ,X)→ (q, γ) ∈ δ.
(r , a,X) → (r ,X)
(r , ⊣,X) → (r ′,X)
(r ′, ǫ,X) → (r ′,X)
(f ′, ǫ,X) → (f ′,X) (f ∈ F) Also drop trans. going from f ′.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

After Step 1

DPDA M′ only has the following kinds of behaviours now:

⊣

f ′

Loops denote an infinite sequence of ǫ-moves.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Construction - Step 2

A spurious transition in M′ is a transition of the form
(p, ǫ,X) → (q, γ) such that

(p, ǫ,X)
∗
⇒ (p, ǫ,Xα)

for some stack contents α.

p
X

p

X∗
⇒

Identify spurious transitions in M′ and remove them:
If (p, ǫ,X) → (q, γ) is a spurious transition, replace it with

(p, ǫ,X) → (r ,X) If p ∈ Q
(p, ǫ,X) → (r ′,X) If p ∈ Q′ − F ′.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Correctness

Argue that:
Deleting a spurious transition (starting from a non-F ′-final
state) does not change the language of M′.
All infinite loops use a spurious transition.

Look at graph of stack height along infinite loop, and argue that
there are infinitely many future minimas.

Further look at transitions applied at these points and observe
that one must repeat.

Thus replacing spurious transitions as described earlier will
remove the remaining undesirable loops from M′’s behaviours.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Complementing

Resulting M′′ has the desired behaviour (every run either
reaches a final sink state or the reject sink state r ′.).

⊣

r ′

f ′

Now make r ′ unique final state to complement the language
of M.

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Closure Properties of DCFL’s

All languages over A

Regular

DCFL
CFL

anbn

anbncn

anbncn

Closed?

Complementation

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Closure Properties of DCFL’s

All languages over A

Regular

DCFL
CFL

anbn

anbncn

anbncn

Closed?

Complementation
√

Union

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Closure Properties of DCFL’s

All languages over A

Regular

DCFL
CFL

anbn

anbncn

anbncn

Closed?

Complementation
√

Union X
Intersection

Deterministic PDA’s Complementing DPDA’s Closure properties of DCFL’s

Closure Properties of DCFL’s

All languages over A

Regular

DCFL
CFL

anbn

anbncn

anbncn

Closed?

Complementation
√

Union X
Intersection X

	Pushdown Automata
	Definitions
	Exercises
	PDA-final-ES-equiv.pdf
	Recap of Pushdown Automata
	Equivalence construction

	PDA=CFG.pdf
	From CFG to PDA

	DPDA.pdf
	Deterministic PDA's
	Complementing DPDA's
	Closure properties of DCFL's

