Outline

@ Intro
© Examples

© Formal Definitions

@ Proving grammars correct

Intro

Why study Context-Free Grammars?

@ Avrise naturally in syntax of programming languages, parsing,
compiling.

@ Characterize languages accepted by Pushdown automata.

@ Pushdown automata are an important class of system models:

@ They can model programs with procedure calls
o Can model other infinite-state systems.

@ Easier to prove properties of Pushdown languages using
CFG's:
¢ Pumping lemma
o Ultimate periodicity
o PDA = PDA without e-transitions.
@ Parsing algo leads to solution to “CFL reachability” problem:
Given a finite A-labelled graph, a CFG G, are two given
vertices u and v connected by a path whose label is in L(G).

Examples

Context-Free Grammars: Example 1

S — aX
X — aX
X — bX
X — b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.

Example derivation:

S

Examples

Context-Free Grammars: Example 1

S — aX
X — aX
X — bX
X — b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.

Example derivation:

S =aX

Examples

Context-Free Grammars: Example 1

S — aX
X — aX
X — bX
X — b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.

Example derivation:

S =aX = abX

Examples

Context-Free Grammars: Example 1

S — aX
X — aX
X — bX
X — b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.

Example derivation:

S =aX = abX = abb.

Examples

Context-Free Grammars: Example 1

S — aX
X — aX
X — bX
X — b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.

Example derivation:

S =aX = abX = abb.

Language defined by G, written L(G), is the set of all terminal
strings that can be generated by G.

Examples

Context-Free Grammars: Example 1

S — aX
X — aX
X — bX
X — b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.

Example derivation:

S =aX = abX = abb.

Language defined by G, written L(G), is the set of all terminal
strings that can be generated by G.
What is language defined by G; above?

Examples

Context-Free Grammars: Example 1

S — aX
X — aX
X — bX
X — b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.

Example derivation:

S =aX = abX = abb.

Language defined by G, written L(G), is the set of all terminal
strings that can be generated by G.
What is language defined by G; above? a(a+ b)*b,

Examples

Context-Free Grammars: Example 2

Example derivation:

)

Examples

Context-Free Grammars: Example 2

Example derivation:

S = asb

Examples

Context-Free Grammars: Example 2

Example derivation:

S = aSh = aaSbb

Examples

Context-Free Grammars: Example 2

Example derivation:

S = aSh = aaSbb = aaaSbbb = aaabbb.

Examples

Context-Free Grammars: Example 2

Example derivation:
S = aSb = aaSbb = aaaSbbb = aaabbb.

What is language defined by G, above?

Examples

Context-Free Grammars: Example 2

Example derivation:
S = aSb = aaSbb = aaaSbbb = aaabbb.

What is language defined by G, above? {a"b" | n > 0}.

Examples

Context-Free Grammars: Example 3

S — aSa|bSb|a|b]|e.

Example derivation:

S

Examples

Context-Free Grammars: Example 3

S — aSa|bSb|a|b]|e.

Example derivation:

S = aSa

Examples

Context-Free Grammars: Example 3

S — aSa|bSb|a|b]|e.

Example derivation:

S = aSa = abSha

Examples

Context-Free Grammars: Example 3

S — aSa|bSb|a|b]|e.

Example derivation:

S = aSa = abSba = abbSbba = abbbba.

Examples

Context-Free Grammars: Example 3

S — aSa|bSb|a|b]|e.

Example derivation:
S = aSa = abSba = abbSbba = abbbba.

What is language defined by Gz above?

Examples

Context-Free Grammars: Example 3

S — aSa|bSb|a|b]|e.

Example derivation:
S = aSa = abSba = abbSbba = abbbba.

What is language defined by Gz above? Palindromes:
{we{a,b}* | w=wR}L

Examples

Context-Free Grammars: Example 4

S — (5)]SS|e

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

=(S)

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

= (S)
= (SS)

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

S = (S)

Examples

Context-Free Grammars: Example 4

S — (5)]SS|e

Examples

Context-Free Grammars: Example 4

S — (5)]SS|e

Examples

Context-Free Grammars: Example 4

S — (5)]SS|e

Examples

Context-Free Grammars: Example 4

S — (5)]SS|e

Examples

Context-Free Grammars: Example 4

S — (5)]SS|e

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

BB 44

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

T

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

B e

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

B e T

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

B R

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

B R

What is language defined by G4 above?

Examples

Context-Free Grammars: Example 4

S — (5)]S8S5]e
Exercise: Derive “((()()))())"-

B R

What is language defined by G, above? Balanced Parenthesis.

Formal Definitions

CFG's more formally

A Context-Free Grammar (CFG) is of the form
G=(N,AS,P)

where
@ N is a finite set of non-terminal symbols
@ Ais a finite set of terminal symbols.
@ S € N is the start non-terminal symbol.

@ PC N x (NUA)* is the set of productions or rules.
Productions are written X — a.

Formal Definitions

Derivations, language etc.

“o derives 3 in 0 or more steps”: a = (3.

First define o = 3 inductively:

o a> 0 iff a is of the form a3 Xay and X — « is a production
in P, and 0 = ajyas.
o o (3 iff there exists 7 such that o = 5 and v = s.

Sentential form of G: any a € (N U A)* such that S = a.

Language defined by G:
{we A" | S=; w.

@ L C A* is called a Context-Free Language (CFL) if there is a
CFG G such that L = L(G).

Proving grammars correct

Proving that a CFG accepts a certain language

Prove that L(G;1) = a(a + b)*b.

Proving grammars correct

Proving that a CFG accepts a certain language

S — aSh

S — e

Prove that L(Gp) = {a"b" | n > 0}.

Outline

© CNF

© Converting to CNF

© Correctness

Chomsky Normal Form

A Context-Free Grammar G is in Chomsky Normal Form if all
productions are of the form

X — YZor
X — a

Its a “normal form” in the sense that

Every CFG G can be converted to a CFG G’ in Chomsky Normal
Form, with L(G’) = L(G) — {e€}.

Why is CNF useful?

@ Gives us a way to do parsing: Given CFG G and w € A*, does
w e L(G)?

Why is CNF useful?

@ Gives us a way to do parsing: Given CFG G and w € A*, does
w e L(G)?
@ If G is in CNF, then length of derivation of w (if one exists)
can be bounded by 2|w|.

Why is CNF useful?

@ Gives us a way to do parsing: Given CFG G and w € A*, does
w e L(G)?
@ If G is in CNF, then length of derivation of w (if one exists)
can be bounded by 2|w|.

@ Makes proofs of properties of CFG's simpler.

Example

S — (5)]SS|e

“Equivalent” grammar in CNF:

LX | SS | LR
SR

(
)

I~ X W0

1Ll

Converting to CNF

Procedure to convert a CFG to CNF

@ Main problem is “unit” productions of the form A — B and
e-productions of the form B — e.

@ Once these productions are eliminated, converting to CNF is
easy.

Converting to CNF

Procedure to remove unit and e-productions

Given a CFG G = (N,A, S, P).
@ Repeatedly add productions according to the steps below till
no more new productions can be added.

Q@ If A— aBf and B — ¢ then add the production A — «f3.
@ If A— B and B — ~ then add the production A — 7.

@ Let resulting grammar be G’ = (N, A, S, P').

o Let G” be grammar (N, A, S, P"), where P” is obtained from
P’ by dropping unit- and e-productions.

@ Return G'.

Converting to CNF

Example

Apply procedure to the grammar below:

S — (5)]SS|e

Correctness

Correctness claims

@ Algorithm terminates

Correctness

Correctness claims

@ Algorithm terminates
@ Notice that each new production added has a RHS that is a
subsequence of RHS an original production in P.
@ G’ generates same language as G.

o Let G/ be grammar obtained after i-th step, with Gy = G.
o Then clearly L(G/ ;) = L(G/).

Correctness

Correctness of G”

L(G") = L(G) — {e}.

Let w € L(G') with w # e. Then any minimal-length derivation of
w in G’ does not use unit or e-productions.

Correctness

Proof of Subclaim

Let w € L(G") with w # €. Then any minimal-length derivation of
w in G’ does not use unit or e-productions.

Consider a derivation of w in G’ which uses a production B — e.
It must be of the form

S L aXB 2 avBsB ZoyBSF S ay5E 2w

Correctness

Proof of Subclaim

Let w € L(G") with w # €. Then any minimal-length derivation of
w in G’ does not use unit or e-productions.

Consider a derivation of w in G’ which uses a production B — e.
It must be of the form

S L aXB 2 avBsB ZoyBSF S ay5E 2w
s 2 aXp LY aysf =y = w.

Now consider a derivation of w in G’ which uses a production
A — B. It must be of the form

S :’> aAB m o' AG' :1> o'Bf' LY o' Bj" :1> o/”yﬂ” :P> w.

Correctness

Proof of Subclaim

Let w € L(G") with w # €. Then any minimal-length derivation of
w in G’ does not use unit or e-productions.

Consider a derivation of w in G’ which uses a production B — e.
It must be of the form

S L aXB 2 avBsB ZoyBSF S ay5E 2w
s 2 aXp LY aysf =y = w.

Now consider a derivation of w in G’ which uses a production
A — B. It must be of the form

S Lol DoAY 2 aBY La'BE Dot Ew
S LaAs BaAg 2ans Laryp 2y

Outline

@ Pumping Lemma

9 Applications

© Closure Properties

Pumping Lemma

Pumping Lemma for CFL's

Pumping Lemma

For every CFL L there is a constant k > 0 such that for any word z
in L of length at least k, there are strings u, v, w, x, y such that

@ Z = uvwxy,
® vx # ¢,

o |vwx| < k, and

o for each i > 0, the string uv'wx'y belongs to L.

Pumping Lemma

Parse trees for CFG's

Derivations can be represented as parse trees:

S — aSh

S — e

Example derivation:

o

aSh

aaSbb
aaaSbbb
aaaaSbbbb
aaaabbbb.

L

LY
o

o

L

P el

L
o

mm>m>m>m>m

Pumping Lemma

Cutting and pasting in parse trees

Subtrees hanging at same non-terminal can be replaced for
eachother.

] N N
a S b a S b

S\ b S b
N A
I

Pumping Lemma

Proof idea

A long string must have a deep parse tree, which in turn means a
path with a repeated non-terminal.

S S

Pumping Lemma

Proof

@ Let G be a CNF grammar for L.
@ A complete binary tree with i levels has 2/~ |eaf nodes.
@ A parse tree in G with i levels has a terminal string (“yield")

of length at most 2/=2.

@ Hence a string of length 2" or more, must have a parse tree of
at least n+ 2 levels.

Take k = 2" where n is number of non-terminals in G.

Pumping Lemma

Proof - Il

@ Consider parse tree in G of a string z
of length at least k = 2". 2

@ Consider longest path from root to
leaf.

@ Choose the first repeated non-terminal
X starting from bottom of path. X

@ Path from upper X down to leaf is at
most n + 2 levels. Also it must be the
longest path in the subtree rooted at
X. Hence length of vwx is at most 2". uovoow x y

o Also vx # ¢, as G is a CNF grammar. < 2!

Applications

Applications

Argue that the following languages are not CFL's:
e {a"b"c" | n>0}.

Applications

Applications

Argue that the following languages are not CFL's:
e {a"b"c" | n>0}.
o {ww | we{ab}*}

Closure Properties

Closure Properties of CFL's

All languages over A

CFL

‘ Closed? ‘

Union ‘

Closure Properties

Closure Properties of CFL's

All languages over A

CFL

‘ Closed? ‘

Union Vv ‘

Intersection

Closure Properties

Closure Properties of CFL's

All languages over A

CFL
‘ Closed? ‘

Union Vv

Intersection X

Complementation

Closure Properties

Closure Properties of CFL's

All languages over A

CFL
‘ Closed? ‘

Union Vv

Intersection X

Complementation | X

Outline

@ Parikh map
© Parikh's theorem
© Proof

@ Applications

© Closure Properties

Parikh map

Parikh map of a string

Let A= {a1,...,an} be a finite alphabet.

Parikh map of a string w € A* is defined a vector in N” given
by:

Y(w) = (Fa (W), #ar (W), ..., #a,(W)).
For example if A = {a, b}, then v(baabb) = (2, 3).

Parikh map is also called the “letter-count” of a string.

Extend the map to languages L over A:

(L) = {¢(w) | w e L}.
What is ¢({a"b" | n > 0})?

Parikh map

Parikh map of a string

Let A= {a1,...,an} be a finite alphabet.

Parikh map of a string w € A* is defined a vector in N” given
by:

Y(w) = (Fa (W), #ar (W), ..., #a,(W)).
For example if A = {a, b}, then v(baabb) = (2, 3).

Parikh map is also called the “letter-count” of a string.

Extend the map to languages L over A:

(L) ={(w) | w e L}.
What is ¢({a"b" | n > 0})?
@ {(n,n) | n>0}.
What is ({w € {a, b} | #a(w) < #5(w)})?

Parikh map

Parikh map of a string

Let A= {a1,...,an} be a finite alphabet.

Parikh map of a string w € A* is defined a vector in N” given
by:

Y(w) = (Fa (W), #ar (W), ..., #a,(W)).
For example if A = {a, b}, then v(baabb) = (2, 3).

Parikh map is also called the “letter-count” of a string.

Extend the map to languages L over A:

(L) = {¢(w) | w e L}.

What is ¢({a"b" | n > 0})?
@ {(n,n) | n>0}.

What is ({w € {a, b}* | #a(w) < #p(w)})?
o {(h)) i<}

Parikh map

Semi-linear sets of vectors

@ The set of vectors generated by a set of vectors uq,..., ux in
N", denoted)uy, ..., ux(, is the set

{dl'ul+d2'U2—|--"+dk-uk | d,'EN}.
@ A subset X of N” is called linear if there exist vectors

up, Ui, . .., U such that X = up + (u1, up, ..., ug).

((1,1),(1,2)

@ A set of vectors is called semi-linear if it is a finite union of
linear sets.

Parikh's theorem

Parikh’s Theorem for CFL's

Theorem (Parikh's theorem)

The Parikh map of a CFL is a semi-linear set.

Some corollaries:
@ Every CFL is "letter-equivalent” to a regular language.
o For example: ¥({a"b"}) = ¥((ab)*).
@ Lengths of a CFL forms an ultimate periodic set.

@ CFL's over a single-letter alphabet are regular.

Parikh's theorem

Parikh’s Theorem for CFL's

Theorem (Parikh's theorem)

The Parikh map of a CFL is a semi-linear set.

Some corollaries:
@ Every CFL is "letter-equivalent” to a regular language.
o For example: ¥({a"b"}) = ¥((ab)*).
@ Lengths of a CFL forms an ultimate periodic set.
@ CFL's over a single-letter alphabet are regular.

Is Parikh's theorem sufficient as well?

Parikh's theorem

Parikh’s Theorem for CFL's

Theorem (Parikh's theorem)

The Parikh map of a CFL is a semi-linear set.

Some corollaries:
@ Every CFL is "letter-equivalent” to a regular language.
o For example: ¥({a"b"}) = ¥((ab)*).
@ Lengths of a CFL forms an ultimate periodic set.
@ CFL's over a single-letter alphabet are regular.
Is Parikh’s theorem sufficient as well?
@ No, since ({a"b"c" | n >0} = {(n,n,n) | n >0} is
semi-linear.

Proof: Pumps

Let us fix a CFG G = (N, A, S, P) in CNF form.

@ A pump is a derivation tree s which has at least two nodes,
and yield(s) = x - root(s) - y, for some terminal strings x, y.
X

@ Example pumps for grammar S — aSb | SS | e:

S S
/TN /TN
a S b a S b

/TN

a S b

A. s

X
v
SAS v

Q Q

)
o
£
S
o

<
=
=
a0
=
=~
c
=
<
7

o
=
i
e10)

=
=
(@]

| .
O

Basic Pumps

Pumps which are <-minimal: Thus a pump s is a basic pump if it
cannot be shrunk by some pump and still remain a pump.

First pump is basic but second is not.
Basic pumps are finite in number (height bounded by 2.|N|.).

< relation on parse trees

® Let s and t be derivation trees of terminal strings starting
from start symbol S.

@ Then we say s < t iff t can be grown from s by basic pumps
whose non-terminals are contained in those of s (thus the
pumps do not introduce any new non-terminals, and s an t
have the same set of non-terminal nodes).

@ A parse tree s is thus <-minimal if it does not contain a basic
pump that can be cut out without reducing the set of
non-terminals that occur in s.

@ <-minimal trees can be seen to be finite in number (height
bounded by (p + 1)(n+1).

Overall strategy of Proof

@ Begin with the <-minimal derivation trees, say si, ..., Sk.

@ Associate with each s; the set of basic pumps whose
non-terminals are contained in that of s;.

@ Argue that the set of derivation trees obtained by starting

with s; and growing using the associated basic pumps, gives
rise to a set of strings whose Parikh map is linear.

	Intro
	Examples
	Formal Definitions
	Proving grammars correct
	CFG-CNF.pdf
	CNF
	Converting to CNF
	Correctness

	CFG-pumping.pdf
	Pumping Lemma
	Applications
	Closure Properties

	CFG-parikh.pdf
	Parikh map
	Parikh's theorem
	Proof
	Applications
	Closure Properties

