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Why study Context-Free Grammars?

Arise naturally in syntax of programming languages, parsing,
compiling.

Characterize languages accepted by Pushdown automata.

Pushdown automata are an important class of system models:

They can model programs with procedure calls
Can model other infinite-state systems.

Easier to prove properties of Pushdown languages using
CFG’s:

Pumping lemma
Ultimate periodicity
PDA = PDA without ǫ-transitions.

Parsing algo leads to solution to “CFL reachability” problem:
Given a finite A-labelled graph, a CFG G , are two given
vertices u and v connected by a path whose label is in L(G ).
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Context-Free Grammars: Example 1

CFG G1

S → aX

X → aX

X → bX

X → b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.
Example derivation:

S
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CFG G1

S → aX
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X → b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.
Example derivation:

S ⇒ aX ⇒ abX ⇒ abb.

Language defined by G , written L(G ), is the set of all terminal
strings that can be generated by G .
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Context-Free Grammars: Example 1

CFG G1

S → aX

X → aX

X → bX

X → b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.
Example derivation:

S ⇒ aX ⇒ abX ⇒ abb.

Language defined by G , written L(G ), is the set of all terminal
strings that can be generated by G .
What is language defined by G1 above?
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Context-Free Grammars: Example 1

CFG G1

S → aX

X → aX

X → bX

X → b

Derivation of a string: Begin with S and keep rewriting the current
string by replacing a non-terminal by its RHS in a production of
the grammar.
Example derivation:

S ⇒ aX ⇒ abX ⇒ abb.

Language defined by G , written L(G ), is the set of all terminal
strings that can be generated by G .
What is language defined by G1 above? a(a + b)∗b.
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Context-Free Grammars: Example 2

CFG G2

S → aSb

S → ǫ.

Example derivation:

S
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CFG G2

S → aSb

S → ǫ.

Example derivation:

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb.
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Context-Free Grammars: Example 2

CFG G2

S → aSb

S → ǫ.

Example derivation:

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb.

What is language defined by G2 above?
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Context-Free Grammars: Example 2

CFG G2

S → aSb

S → ǫ.

Example derivation:

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb.

What is language defined by G2 above? {anbn | n ≥ 0}.
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Context-Free Grammars: Example 3

CFG G3

S → aSa | bSb | a | b | ǫ.

Example derivation:

S
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CFG G3
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Example derivation:

S ⇒ aSa
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Context-Free Grammars: Example 3

CFG G3

S → aSa | bSb | a | b | ǫ.

Example derivation:

S ⇒ aSa ⇒ abSba ⇒ abbSbba ⇒ abbbba.
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Context-Free Grammars: Example 3

CFG G3

S → aSa | bSb | a | b | ǫ.

Example derivation:

S ⇒ aSa ⇒ abSba ⇒ abbSbba ⇒ abbbba.

What is language defined by G3 above?
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Context-Free Grammars: Example 3

CFG G3

S → aSa | bSb | a | b | ǫ.

Example derivation:

S ⇒ aSa ⇒ abSba ⇒ abbSbba ⇒ abbbba.

What is language defined by G3 above? Palindromes:
{w ∈ {a, b}∗ | w = wR}.
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Context-Free Grammars: Example 4

CFG G4

S → (S) | SS | ǫ.



Intro Examples Formal Definitions Proving grammars correct

Context-Free Grammars: Example 4

CFG G4

S → (S) | SS | ǫ.

Exercise: Derive “((()())()())”.
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Context-Free Grammars: Example 4
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Context-Free Grammars: Example 4

CFG G4

S → (S) | SS | ǫ.

Exercise: Derive “((()())()())”.
S ⇒ (S)
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Context-Free Grammars: Example 4

CFG G4

S → (S) | SS | ǫ.

Exercise: Derive “((()())()())”.
S ⇒ (S)
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⇒ ((S)SS)
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Context-Free Grammars: Example 4

CFG G4

S → (S) | SS | ǫ.

Exercise: Derive “((()())()())”.
S ⇒ (S)

⇒ (SS)
⇒ (SSS)
⇒ ((S)SS)
⇒ ((SS)SS)
⇒ (((S)S)SS)
⇒ ((()S)SS)
⇒ ((()(S))SS)
⇒ ((()())SS)
⇒ ((()())(S)S)
⇒ ((()())()S)
⇒ ((()())()(S))
⇒ ((()())()())

What is language defined by G4 above? Balanced Parenthesis.
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CFG’s more formally

A Context-Free Grammar (CFG) is of the form

G = (N,A,S ,P)

where

N is a finite set of non-terminal symbols

A is a finite set of terminal symbols.

S ∈ N is the start non-terminal symbol.

P ⊆ N × (N ∪ A)∗ is the set of productions or rules.
Productions are written X → α.
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Derivations, language etc.

“α derives β in 0 or more steps”: α ⇒∗

G
β.

First define α
n
⇒ β inductively:

α
1
⇒ β iff α is of the form α1Xα2 and X → γ is a production

in P , and β = α1γα2.

α
n+1
⇒ β iff there exists γ such that α

n
⇒ γ and γ

1
⇒ β.

Sentential form of G : any α ∈ (N ∪ A)∗ such that S ⇒∗

G
α.

Language defined by G :

{w ∈ A
∗ | S ⇒∗

G w}.

L ⊆ A∗ is called a Context-Free Language (CFL) if there is a
CFG G such that L = L(G ).
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Proving that a CFG accepts a certain language

CFG G1

S → aX

X → aX

X → bX

X → b

Prove that L(G1) = a(a + b)∗b.
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Proving that a CFG accepts a certain language

CFG G2

S → aSb

S → ǫ.

Prove that L(G2) = {anbn | n ≥ 0}.
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CNF Converting to CNF Correctness

Chomsky Normal Form

A Context-Free Grammar G is in Chomsky Normal Form if all
productions are of the form

X → YZ or

X → a

Its a “normal form” in the sense that

CNF

Every CFG G can be converted to a CFG G ′ in Chomsky Normal
Form, with L(G ′) = L(G ) − {ǫ}.
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Why is CNF useful?

Gives us a way to do parsing: Given CFG G and w ∈ A∗, does
w ∈ L(G )?
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Why is CNF useful?

Gives us a way to do parsing: Given CFG G and w ∈ A∗, does
w ∈ L(G )?

If G is in CNF, then length of derivation of w (if one exists)
can be bounded by 2|w |.



CNF Converting to CNF Correctness

Why is CNF useful?

Gives us a way to do parsing: Given CFG G and w ∈ A∗, does
w ∈ L(G )?

If G is in CNF, then length of derivation of w (if one exists)
can be bounded by 2|w |.

Makes proofs of properties of CFG’s simpler.
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Example

CFG G4

S → (S) | SS | ǫ.

“Equivalent” grammar in CNF:

CFG G ′

4 in CNF

S → LX | SS | LR

X → SR

L → (
R → )
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Procedure to convert a CFG to CNF

Main problem is “unit” productions of the form A → B and
ǫ-productions of the form B → ǫ.

Once these productions are eliminated, converting to CNF is
easy.



CNF Converting to CNF Correctness

Procedure to remove unit and ǫ-productions

Given a CFG G = (N,A,S ,P).

Repeatedly add productions according to the steps below till
no more new productions can be added.

1 If A → αBβ and B → ǫ then add the production A → αβ.
2 If A → B and B → γ then add the production A → γ.

Let resulting grammar be G ′ = (N,A,S ,P ′).

Let G ′′ be grammar (N,A,S ,P ′′), where P ′′ is obtained from
P ′ by dropping unit- and ǫ-productions.

Return G ′.
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Example

Apply procedure to the grammar below:

CFG G4

S → (S) | SS | ǫ.
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Correctness claims

Algorithm terminates



CNF Converting to CNF Correctness

Correctness claims

Algorithm terminates

Notice that each new production added has a RHS that is a
subsequence of RHS an original production in P .

G ′ generates same language as G .

Let G ′

i
be grammar obtained after i-th step, with G ′

0 = G .
Then clearly L(G ′

i+1) = L(G ′

i
).
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Correctness of G
′′

Claim

L(G ′′) = L(G ) − {ǫ}.

Subclaim

Let w ∈ L(G ′) with w 6= ǫ. Then any minimal-length derivation of
w in G ′ does not use unit or ǫ-productions.
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Proof of Subclaim

Subclaim

Let w ∈ L(G ′′) with w 6= ǫ. Then any minimal-length derivation of
w in G ′ does not use unit or ǫ-productions.

Consider a derivation of w in G ′ which uses a production B → ǫ.
It must be of the form

S
l
⇒ αXβ

1
⇒ αγBδβ

m
⇒ α′γ′Bδ′β′

1
⇒ α′γ′δ′β′

n
⇒ w .
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Proof of Subclaim

Subclaim
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Proof of Subclaim

Subclaim
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Pumping Lemma Applications Closure Properties

Pumping Lemma for CFL’s

Pumping Lemma

For every CFL L there is a constant k ≥ 0 such that for any word z

in L of length at least k, there are strings u, v ,w , x , y such that

z = uvwxy ,

vx 6= ǫ,

|vwx | ≤ k, and

for each i ≥ 0, the string uv iwx iy belongs to L.

≤ k
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Parse trees for CFG’s

Derivations can be represented as parse trees:

CFG G2

S → aSb

S → ǫ.

Example derivation:

S ⇒ aSb

⇒ aaSbb

⇒ aaaSbbb

⇒ aaaaSbbbb

⇒ aaaabbbb.

S

Sa b

Sa b

Sa b

Sa b

ǫ
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Cutting and pasting in parse trees

Subtrees hanging at same non-terminal can be replaced for
eachother.

S

Sa b

Sa b

S

Sa b

Sa b

Sa b

Sa b

Sa b

Sa b

ǫ

S

Sa b

Sa b

Sa b

Sa b

ǫ

ǫ
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Proof idea

A long string must have a deep parse tree, which in turn means a
path with a repeated non-terminal.

X

X

X

X

X

SS
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Proof

Let G be a CNF grammar for L.

A complete binary tree with i levels has 2i−1 leaf nodes.

A parse tree in G with i levels has a terminal string (“yield”)
of length at most 2i−2.

Hence a string of length 2n or more, must have a parse tree of
at least n + 2 levels.

Take k = 2n where n is number of non-terminals in G .
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Proof - II

Consider parse tree in G of a string z

of length at least k = 2n.

Consider longest path from root to
leaf.

Choose the first repeated non-terminal
X starting from bottom of path.

Path from upper X down to leaf is at
most n + 2 levels. Also it must be the
longest path in the subtree rooted at
X . Hence length of vwx is at most 2n.

Also vx 6= ǫ, as G is a CNF grammar.

X

X

S

u v w x y

≤ 2n+1
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Argue that the following languages are not CFL’s:

{anbncn | n ≥ 0}.
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Applications

Argue that the following languages are not CFL’s:

{anbncn | n ≥ 0}.

{ww | w ∈ {a, b}∗}.



Pumping Lemma Applications Closure Properties

Closure Properties of CFL’s

All languages over A

Regular

CFL

Closed?

Union



Pumping Lemma Applications Closure Properties

Closure Properties of CFL’s

All languages over A

Regular

CFL

Closed?

Union
√

Intersection



Pumping Lemma Applications Closure Properties

Closure Properties of CFL’s

All languages over A

Regular

CFL

Closed?

Union
√

Intersection X
Complementation



Pumping Lemma Applications Closure Properties

Closure Properties of CFL’s

All languages over A

Regular

CFL

Closed?

Union
√

Intersection X
Complementation X
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Parikh map Parikh’s theorem Proof Applications Closure Properties

Parikh map of a string

Let A = {a1, . . . , an} be a finite alphabet.

Parikh map of a string w ∈ A∗ is defined a vector in N
n given

by:
ψ(w) = (#a1(w),#a2(w), . . . ,#an

(w)).

For example if A = {a, b}, then ψ(baabb) = (2, 3).

Parikh map is also called the “letter-count” of a string.

Extend the map to languages L over A:

ψ(L) = {ψ(w) | w ∈ L}.

What is ψ({anbn | n ≥ 0})?
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Parikh map of a string

Let A = {a1, . . . , an} be a finite alphabet.

Parikh map of a string w ∈ A∗ is defined a vector in N
n given

by:
ψ(w) = (#a1(w),#a2(w), . . . ,#an

(w)).

For example if A = {a, b}, then ψ(baabb) = (2, 3).

Parikh map is also called the “letter-count” of a string.

Extend the map to languages L over A:

ψ(L) = {ψ(w) | w ∈ L}.

What is ψ({anbn | n ≥ 0})?

{(n, n) | n ≥ 0}.

What is ψ({w ∈ {a, b}∗ | #a(w) ≤ #b(w)})?
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Parikh map of a string

Let A = {a1, . . . , an} be a finite alphabet.

Parikh map of a string w ∈ A∗ is defined a vector in N
n given

by:
ψ(w) = (#a1(w),#a2(w), . . . ,#an

(w)).

For example if A = {a, b}, then ψ(baabb) = (2, 3).

Parikh map is also called the “letter-count” of a string.

Extend the map to languages L over A:

ψ(L) = {ψ(w) | w ∈ L}.

What is ψ({anbn | n ≥ 0})?

{(n, n) | n ≥ 0}.

What is ψ({w ∈ {a, b}∗ | #a(w) ≤ #b(w)})?

{(i , j) | i ≤ j}.
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Semi-linear sets of vectors

The set of vectors generated by a set of vectors u1, . . . , uk in
N

n, denoted 〉u1, . . . , uk〈, is the set

{d1 · u1 + d2 · u2 + · · · + dk · uk | di ∈ N}.

A subset X of N
n is called linear if there exist vectors

u0, u1, . . . , uk such that X = u0 + 〈u1, u2, . . . , uk〉.

〈(1, 1), (1, 2)〉

A set of vectors is called semi-linear if it is a finite union of
linear sets.
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Parikh’s Theorem for CFL’s

Theorem (Parikh’s theorem)

The Parikh map of a CFL is a semi-linear set.

Some corollaries:

Every CFL is “letter-equivalent” to a regular language.

For example: ψ({anbn}) = ψ((ab)∗).

Lengths of a CFL forms an ultimate periodic set.

CFL’s over a single-letter alphabet are regular.
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Is Parikh’s theorem sufficient as well?
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Parikh’s Theorem for CFL’s

Theorem (Parikh’s theorem)

The Parikh map of a CFL is a semi-linear set.

Some corollaries:

Every CFL is “letter-equivalent” to a regular language.

For example: ψ({anbn}) = ψ((ab)∗).

Lengths of a CFL forms an ultimate periodic set.

CFL’s over a single-letter alphabet are regular.

Is Parikh’s theorem sufficient as well?

No, since ψ({anbncn | n ≥ 0} = {(n, n, n) | n ≥ 0} is
semi-linear.



Parikh map Parikh’s theorem Proof Applications Closure Properties

Proof: Pumps

Let us fix a CFG G = (N,A,S ,P) in CNF form.

A pump is a derivation tree s which has at least two nodes,
and yield(s) = x · root(s) · y , for some terminal strings x , y .

X

X

Example pumps for grammar S → aSb | SS | ǫ:
S

Sa b S

Sa b

S

a b
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Growing and shrinking with pumps

Y

X

X

X

⊳

X

Y

X

S

Sa b

a b

b

S

a b

Sa b

ǫ

S

a

S

ǫ

S

⊳

S

Sa b
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Basic Pumps

Pumps which are ⊳-minimal: Thus a pump s is a basic pump if it
cannot be shrunk by some pump and still remain a pump.

S

Sa b S

Sa b

S

a b

First pump is basic but second is not.
Basic pumps are finite in number (height bounded by 2.|N|.).
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≤ relation on parse trees

Let s and t be derivation trees of terminal strings starting
from start symbol S .

Then we say s ≤ t iff t can be grown from s by basic pumps
whose non-terminals are contained in those of s (thus the
pumps do not introduce any new non-terminals, and s an t

have the same set of non-terminal nodes).

A parse tree s is thus ≤-minimal if it does not contain a basic
pump that can be cut out without reducing the set of
non-terminals that occur in s.

≤-minimal trees can be seen to be finite in number (height
bounded by (p + 1)(n + 1).
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Overall strategy of Proof

Begin with the ≤-minimal derivation trees, say s1, . . . , sk .

Associate with each si the set of basic pumps whose
non-terminals are contained in that of si .

Argue that the set of derivation trees obtained by starting
with si and growing using the associated basic pumps, gives
rise to a set of strings whose Parikh map is linear.
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