
Time Complexity

Definition

Let t : n→ n be a function.

TIME (t(n)) = {L|L is a language decidable by a O(t(n))
deterministic TM}
NTIME (t(n)) = {L|L is a language decidable by a O(t(n))
non-deterministic TM}
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Polynomial Time

Definition

P =
⋃
k

TIME (nk)

Example

{anbncn|n ≥ 0} ∈ P

Which are in P and Which arent?
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Nondeterministic Polynomial Time

Definition

NP =
⋃
k

NTIME (nk)

Example

the Traveling Salesman Problem (TSP) problem
the Integer Linear Programming (ILP) problem

Claim: P ⊆ NP
Proof: A deterministic Turing machine is a special case of
non-deterministic Turing machines.
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Exponential Time

Definition

EXPTIME =
⋃
k

TIME (2n
k
)
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Space Complexity

Definition

Let s : n→ n be a function.

DSPACE (s(n)) = {L|L is a language decidable by a O(s(n)) space
deterministic TM}
NSPACE (s(n)) = {L|L is a language decidable by a O(s(n)) space
non-deterministic TM}

3-Tape TM
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Logarithmic Space

Definition

L = DSPACE (log n)

NL = NSPACE (log n)
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Polynomial Space

Definition

PSPACE =
⋃
k

DSPACE (nk)

Example

{anbncn|n ≥ 0} ∈ PSPACE

Claim: P ⊆ PSPACE
Proof: A TM which runs in time t(n) can use at most t(n) space.
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Observation

Theorem

PSPACE ⊆ EXPTIME

Proof.

A machine which uses polynomial space has at most exponential number
of configurations (remember? ). As deterministic machine that halts may
not repeat a configuration, its running time is bounded by the number of
possible configurations.
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Conjectured Relations Among Deterministic Classes
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Two Important Theorems Regarding Space Complexity

Theorem (Savitch’s Theorem)

∀S(n) ≥ log(n),NSPACE (S(n)) ⊆ SPACE (S(n)2)

Theorem (Immerman’s Theorem )

∀S(n) ≥ log(n),NSPACE (s(n)) = co − NSPACE (s(n))
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Time and Space

Recall: TIME (f (n)), SPACE (s(n))

Questions:

how are these classes related to each other?
how do we define robust time and space classes?
what problems are contained in these classes? complete for these
classes?
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Linear Speedup

Theorem

Suppose TM M decides language L in time f (n). Then for any ε > 0,
there exists TM M ′ that decides L in time ε · f (n) + n + 2.

Proof Idea:

compress input onto fresh tape:
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Linear Speedup (cont’d)

simulate M, m steps at a time

accounting:

part 1 (copying): n + 2 steps
part 2 (simulation): 6(f (n)/m)
set m = 6/ε
total: ε · f (n) + n + 2
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Hierarchy Theorems

Does genuinely more time permit us to decide new languages?

how can we construct a language L that is not in TIME (f (n))

idea: same as ”HALT undecidable” diagonalization and simulation
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Time Hierarchy Theorem
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Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem)

For every proper complexity function f (n) ≥ n,

TIME (f (n))
⊂
6= TIME (f (2n)3).

Proper complexity function (also known as (fully) time-constructible
function):

f (n) ≥ f (n − 1) for all n

there exists a TM M that outputs exactly f (n) symbols on input 1n,
and runs in time O(f (n) + n) and space O(f (n)).

includes all reasonable functions we will work with .
logn,

√
n, n2, 2n, n!, ....

If f and g are proper then f + g , fg , f (g), f g , 2g are all proper.

can mostly ignore, but be aware it is a genuine concern.

Theorem: ∃ non-proper f such that TIME (f (n)) = TIME (2f (n)).
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Proof of Time Hierarchy Theorem

SIM is TM deciding language {< M, x >: M accepts x in ≤ f (|x |)
steps }
Claim: SIM runs in time g(n) = f (n)3.

define new TM D: on input < M >

if SIM accepts < M,M >, reject
if SIM rejects < M,M >, accept.

D runs in time g(2n)

suppose M in TIME (f (n)) decides L(D)

M(< M >) = SIM(< M,M >) 6= D(< M >)
but M(< M >) = D(< M >)

contradiction.
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Space Hierarchy Theorem

Theorem (Time Hierarchy Theorem)

For every proper complexity function f (n) ≥ log2n,

DSPACE (f (n))
⊂
6= DSPACE (f (n)log2n).
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Robust Time and Space Classes

What is meant by ”robust” class?

no formal definition

reasonable changes to model of computation shouldnt change class

should allow ”modular composition”

calling subroutine in class (for classes closed under complement ... )

Examples:

L = DSPACE (logn)

PSPACE =
⋃
k

DSPACE (nk)

P =
⋃
k

DTIME (nk)

EXP =
⋃
k

DTIME (2n
k
)
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Relationships between classes

How are these four classes related to each other?

Time Hierarchy Theorem implies

P
⊂
6= EXP

Space Hierarchy Theorem implies

L
⊂
6= PSPACE

L vs. P? PSPACE vs. EXP?
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Relationships between classes
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Relationships between classes
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A P-complete problem

We don’t know how to prove L 6= P

But, can identify problems in P least likely to be in L using
P-completeness.

need stronger reduction (why?)

logspace reduction: f computable by DTM that uses O(logn)
space, denoted gL1 ≤L L2

If L2 is P-complete, then L2 in L implies L = P
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A P-complete problem

Circuit Value (CVAL): given a variable-free Boolean circuit (gates
(∨,∧,¬, 0, 1), does it output 1?

Theorem

CVAL is P-complete.
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CVAL is P-complete (proof)

already argued in P

L arbitrary language in P, TM M decides L in nk steps
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Summary

First separations (via simulation and diagonalization):
P 6= EXP, L 6= PSPACE

First major open questions:

L
?
= P, P

?
= PSPACE

First complete problems: CVAL is P-complete
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