Time Complexity

Let $t: n \rightarrow n$ be a function.

- $\operatorname{TIME}(t(n))=\{L \mid L$ is a language decidable by a $O(t(n))$ deterministic TM $\}$
- $\operatorname{NTIME}(t(n))=\{L \mid L$ is a language decidable by a $O(t(n))$ non-deterministic TM $\}$

Polynomial Time

$$
P=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

Example

$\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\} \in P$

Which are in P and Which arent?
Minimum
Spanning Tree

Nondeterministic Polynomial Time

$$
N P=\bigcup_{k} N T I M E\left(n^{k}\right)
$$

Example

the Traveling Salesman Problem (TSP) problem the Integer Linear Programming (ILP) problem

Claim: $P \subseteq N P$
Proof: A deterministic Turing machine is a special case of non-deterministic Turing machines.

Exponential Time

$$
E X P T I M E=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Space Complexity

Let $s: n \rightarrow n$ be a function.

- $\operatorname{DSPACE}(s(n))=\{L \mid L$ is a language decidable by a $O(s(n))$ space deterministic TM $\}$
- $\operatorname{NSPACE}(s(n))=\{L \mid L$ is a language decidable by a $O(s(n))$ space non-deterministic TM $\}$

3-Tape TM

Logarithmic Space

$$
L=D S P A C E(\log n)
$$

$N L=N S P A C E(\log n)$

Polynomial Space

$$
\operatorname{PSPACE}=\bigcup_{k} D S P A C E\left(n^{k}\right)
$$

Example

$\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\} \in P S P A C E$

Claim: $P \subseteq P S P A C E$
Proof: A TM which runs in time $t(n)$ can use at most $t(n)$ space.

Observation

PSPACE $\subseteq E X P T I M E$

A machine which uses polynomial space has at most exponential number of configurations (remember?). As deterministic machine that halts may not repeat a configuration, its running time is bounded by the number of possible configurations.

Conjectured Relations Among Deterministic Classes

Two Important Theorems Regarding Space Complexity

$$
\forall S(n) \geq \log (n), \operatorname{NSPACE}(S(n)) \subseteq \operatorname{SPACE}\left(S(n)^{2}\right)
$$

$$
\forall S(n) \geq \log (n), \operatorname{NSPACE}(s(n))=c o-\operatorname{NSPACE}(s(n))
$$

Time and Space

- Recall: $\operatorname{TIME}(f(n)), \operatorname{SPACE}(s(n))$
- Questions:
- how are these classes related to each other?
- how do we define robust time and space classes?
- what problems are contained in these classes? complete for these classes?

Linear Speedup

Suppose TM M decides language L in time $f(n)$. Then for any $\epsilon>0$, there exists $T M M^{\prime}$ that decides L in time $\epsilon \cdot f(n)+n+2$.

Proof Idea:

- compress input onto fresh tape:

Linear Speedup (cont'd)

- simulate M, m steps at a time

- 4 (L,R,R,L) steps to read relevant symbols, "remember" in state
- $2(L, R$ or R, L) to make M's changes
- accounting:
- part 1 (copying): $n+2$ steps
- part 2 (simulation): $6(f(n) / m)$
- set $m=6 / \epsilon$
- total: $\epsilon \cdot f(n)+n+2$

Hierarchy Theorems

- Does genuinely more time permit us to decide new languages?
- how can we construct a language L that is not in $\operatorname{TIME}(f(n))$
- idea: same as "HALT undecidable" diagonalization and simulation

Time Hierarchy Theorem

Time Hierarchy Theorem

For every proper complexity function $f(n) \geq n$, $\operatorname{TIME}(f(n)) \neq \operatorname{TIME}\left(f(2 n)^{3}\right)$.

Proper complexity function (also known as (fully) time-constructible function):

- $f(n) \geq f(n-1)$ for all n
- there exists a TM M that outputs exactly $f(n)$ symbols on input 1^{n}, and runs in time $O(f(n)+n)$ and space $O(f(n))$.
- includes all reasonable functions we will work with . $\log n, \sqrt{n}, n^{2}, 2^{n}, n!, \ldots$
If f and g are proper then $f+g, f g, f(g), f^{g}, 2^{g}$ are all proper.
- can mostly ignore, but be aware it is a genuine concern.
- Theorem: \exists non-proper f such that $\operatorname{TIME}(f(n))=\operatorname{TIME}\left(2^{f}(n)\right)$.

Proof of Time Hierarchy Theorem

- SIM is TM deciding language $\{<M, x>: M$ accepts \times in $\leq f(|x|)$ steps \}
- Claim: SIM runs in time $g(n)=f(n)^{3}$.
- define new TM D: on input $<M>$
- if SIM accepts $<M, M>$, reject
- if SIM rejects $\langle M, M\rangle$, accept.
- D runs in time $g(2 n)$
- suppose M in $\operatorname{TIME}(f(n))$ decides $L(D)$
- $M(<M>)=\operatorname{SIM}(<M, M>) \neq D(<M>)$
- but $M(<M>)=D(<M>)$
- contradiction.

Space Hierarchy Theorem

For every proper complexity function $f(n) \geq \log _{2} n$, $\operatorname{DSPACE}(f(n)) \neq \operatorname{DSPACE}^{\left(f(n) \log _{2} n\right) .}$

Robust Time and Space Classes

What is meant by "robust" class?

- no formal definition
- reasonable changes to model of computation shouldnt change class
- should allow "modular composition"
- calling subroutine in class (for classes closed under complement ...)

Examples:

$$
\begin{gathered}
L=D S P A C E(\log n) \\
P S P A C E=\bigcup_{k} D S P A C E\left(n^{k}\right) \\
P=\bigcup_{k} D \operatorname{TIME}\left(n^{k}\right) \\
E X P=\bigcup_{k} D \operatorname{TIME}\left(2^{n^{k}}\right)
\end{gathered}
$$

Relationships between classes

- How are these four classes related to each other?
- Time Hierarchy Theorem implies

$$
P \not \subset E X P
$$

- Space Hierarchy Theorem implies

$$
L \neq P S P A C E
$$

- L vs. P? PSPACE vs. EXP?

Relationships between classes

- Useful convention: Turing Machine configurations. Any point in computation

| σ_{1} | σ_{2} | \ldots | σ_{i} | σ_{i+1} | \ldots | σ_{m} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\ldots

represented by string:

$$
\mathrm{C}=\sigma_{1} \sigma_{2} \ldots \sigma_{i} q \sigma_{i+1} \sigma_{i+2} \ldots \sigma_{m}
$$

- start configuration for single-tape TM on input $x: q_{\text {start }} x_{1} x_{2} \ldots x_{n}$

Relationships between classes

- easy to tell if C yields C' in 1 step
- configuration graph: nodes are configurations, edge (C, C^{\prime}) iff C yields C^{\prime} in one step
- \# configurations for a 2-tape TM (work tape + read-only input) that runs in space $t(n)$
input-tape head position
$\rightarrow \mathrm{n} \times \mathrm{t}(\mathrm{n}) \times|\mathrm{Q}| \times|\Sigma|_{\stackrel{t(n)}{\infty}}$
state
work-tape head position

Relationships between classes

- if $\mathrm{t}(\mathrm{n})=\mathrm{c} \log \mathrm{n}$, at most

$$
n \times(c \log n) \times c_{0} \times c_{1}{ }^{\log n} \leq n^{k}
$$

configurations.

- can determine if reach $\mathbf{q}_{\text {accept }}$ or $\mathbf{q}_{\text {reject }}$ from start configuration by exploring config. graph of size n^{k} (e.g. by DFS)
- Conclude: $\mathbf{L} \subset \mathbf{P}$

Relationships between classes

- if $\mathrm{t}(\mathrm{n})=\mathrm{n}^{\mathrm{c}}$, at most

$$
n \times n^{c} \times c_{0} \times c_{1}^{n^{c}} \leq 2^{n^{k}}
$$

configurations.

- can determine if reach $\mathbf{q}_{\text {accept }}$ or $\mathbf{q}_{\text {reject }}$ from start configuration by exploring config. graph of size $2^{\mathrm{n}^{\mathrm{k}}}$ (e.g. by DFS)
- Conclude: PSPACE \subset EXP

Relationships between classes

- So far:

$$
\mathbf{L} \subset \mathbf{P} \subset \mathbf{P S P A C E} \subset \mathbf{E X P}
$$

- believe all containments strict
- know $\mathbf{L} \subsetneq$ PSPACE, $\mathbf{P} \subsetneq$ EXP
- even before any mention of NP, two major unsolved problems:

$$
L \stackrel{?}{=} \mathbf{P} \quad \mathbf{P} \stackrel{?}{=} \text { PSPACE }
$$

A P-complete problem

- We don't know how to prove $L \neq P$
- But, can identify problems in P least likely to be in L using P-completeness.
- need stronger reduction (why?)
- logspace reduction: f computable by DTM that uses $O(\operatorname{logn})$ space, denoted $g L_{1} \leq_{L} L_{2}$
- If L_{2} is P-complete, then L_{2} in L implies $L=P$

A P-complete problem

Circuit Value (CVAL): given a variable-free Boolean circuit (gates ($\vee, \wedge, \neg, 0,1$), does it output 1 ?

CVAL is P-complete.

CVAL is P-complete (proof)

- already argued in P
- L arbitrary language in P, TM M decides L in n^{k} steps
- Tableau (configurations written in an array) for machine M on input w:

w_{1} / q_{s}	w_{2}	\ldots	w_{n}	\ldots	-
w_{1}	w_{2} / q_{1}	\ldots	w_{n}	\ldots	-
w_{1} / q_{1}	a	\ldots	w_{n}	\ldots	-

- height = time taken
$=|\mathrm{w}|^{\mathrm{c}}$
- width =
 space used $\leq|w|^{c}$

CVAL is P-complete (proof)

- Important observation: contents of cell in tableau determined by 3 others above it:

CVAL is P-complete (proof)

- Can build Boolean circuit STEP
- input (binary encoding of) 3 cells
- output (binary encoding of) 1 cell

- each output bit is some function of inputs
- can build circuit for each
- size is independent of size of tableau

CVAL is P-complete (proof)

Tableau for
M on input

- $|w|^{c}$ copies of STEP compute row i from i-1

STEP STEP STEP STEP STEP

CVAL is P-complete (proof)

Summary

- First separations (via simulation and diagonalization): $P \neq E X P, \quad L \neq P S P A C E$
- First major open questions:

$$
L \stackrel{?}{=} P, \quad P \stackrel{?}{=} P S P A C E
$$

- First complete problems: CVAL is P-complete

