#### Definition

#### Let $t : n \rightarrow n$ be a function.

- TIME(t(n)) = {L|L is a language decidable by a O(t(n)) deterministic TM}
- NTIME(t(n)) = {L|L is a language decidable by a O(t(n)) non-deterministic TM}

< 3 > < 3 >

### Polynomial Time

#### Definitior

$$P = \bigcup_k TIME(n^k)$$

### Example

 $\{a^nb^nc^n|n\geq 0\}\in P$ 

### Which are in P and Which arent?



H. Yen (NTUEE)

Fall 2012 2 / 33

#### Definition

$$NP = \bigcup_k NTIME(n^k)$$

### Example

the Traveling Salesman Problem (TSP) problem the Integer Linear Programming (ILP) problem

Claim:  $P \subseteq NP$ Proof: A deterministic Turing machine is a special case of non-deterministic Turing machines.

#### Definition

$$EXPTIME = \bigcup_{k} TIME(2^{n^{k}})$$

H. Yen (NTUEE)

・ロト ・ 日 ト ・ 日 ト ・

# Space Complexity

#### Definition

Let  $s: n \rightarrow n$  be a function.

- DSPACE(s(n)) = {L|L is a language decidable by a O(s(n)) space deterministic TM}
- NSPACE(s(n)) = {L|L is a language decidable by a O(s(n)) space non-deterministic TM}



#### Definition

### L = DSPACE(log n)

### NL = NSPACE(log n)

H. Yen (NTUEE)

Image: A matrix

#### Definition

$$PSPACE = \bigcup_{k} DSPACE(n^{k})$$

### Example

 ${a^n b^n c^n | n \ge 0} \in PSPACE$ 

Claim:  $P \subseteq PSPACE$ Proof: A TM which runs in time t(n) can use at most t(n) space.

H. Yen (NTUEE)

#### Theorem

 $PSPACE \subseteq EXPTIME$ 

#### Proof.

A machine which uses polynomial space has at most exponential number of configurations (remember?). As deterministic machine that halts may not repeat a configuration, its running time is bounded by the number of possible configurations.

### Conjectured Relations Among Deterministic Classes



Theorem (Savitch's Theorem)

 $\forall S(n) \ge log(n), NSPACE(S(n)) \subseteq SPACE(S(n)^2)$ 

Theorem (Immerman's Theorem)

 $\forall S(n) \ge log(n), NSPACE(s(n)) = co - NSPACE(s(n))$ 

H. Yen (NTUEE)

- Recall: TIME(f(n)), SPACE(s(n))
- Questions:
  - how are these classes related to each other?
  - how do we define robust time and space classes?
  - what problems are contained in these classes? complete for these classes?

#### Theorem

Suppose TM M decides language L in time f(n). Then for any  $\epsilon > 0$ , there exists TM M' that decides L in time  $\epsilon \cdot f(n) + n + 2$ .

Proof Idea:

• compress input onto fresh tape:



# Linear Speedup (cont'd)

• simulate *M*, *m* steps at a time



 4 (L,R,R,L) steps to read relevant symbols, "remember" in state

-2 (L,R or R,L) to make M's changes

- accounting:
  - part 1 (copying): n + 2 steps
  - part 2 (simulation): 6(f(n)/m)

• set 
$$m = 6/\epsilon$$

• total:  $\epsilon \cdot f(n) + n + 2$ 

- Does genuinely more time permit us to decide new languages?
- how can we construct a language L that is not in TIME(f(n))
- idea: same as "HALT undecidable" diagonalization and simulation

### Time Hierarchy Theorem



### Theorem (Time Hierarchy Theorem

For every proper complexity function  $f(n) \ge n$ ,  $TIME(f(n)) \stackrel{\subset}{\neq} TIME(f(2n)^3).$ 

**Proper complexity function** (also known as (fully) time-constructible function):

- $f(n) \ge f(n-1)$  for all n
- there exists a TM M that outputs exactly f(n) symbols on input  $1^n$ , and runs in time O(f(n) + n) and space O(f(n)).
- includes all reasonable functions we will work with .  $logn, \sqrt{n}, n^2, 2^n, n!, ...$

If f and g are proper then f + g, fg, f(g),  $f^g$ ,  $2^g$  are all proper.

- can mostly ignore, but be aware it is a genuine concern.
- Theorem:  $\exists$  non-proper f such that  $TIME(f(n)) = TIME(2^{f}(n))$ .

### Proof of Time Hierarchy Theorem

- SIM is TM deciding language {< M, x >: M accepts x in ≤ f(|x|) steps }
- Claim: SIM runs in time  $g(n) = f(n)^3$ .
- define new TM D: on input < M >
  - if SIM accepts < M, M >, reject
  - if SIM rejects < M, M >, accept.
- D runs in time g(2n)
- suppose *M* in TIME(f(n)) decides L(D)
  - $M(< M >) = SIM(< M, M >) \neq D(< M >)$
  - but M(< M >) = D(< M >)

• contradiction.

### Theorem (Time Hierarchy Theorem)

For every proper complexity function  $f(n) \ge \log_2 n$ ,  $DSPACE(f(n)) \stackrel{\subset}{\neq} DSPACE(f(n)\log_2 n)$ .



### Robust Time and Space Classes

What is meant by "robust" class?

- no formal definition
- reasonable changes to model of computation shouldnt change class
- should allow "modular composition"

 $\bullet$  calling subroutine in class (for classes closed under complement  $\dots$  )  $\mbox{Examples}:$ 

$$L = DSPACE(logn)$$

$$PSPACE = \bigcup_{k} DSPACE(n^{k})$$

$$P = \bigcup_{k} DTIME(n^{k})$$

$$EXP = \bigcup_{k} DTIME(2^{n^{k}})$$

H. Yen (NTUEE)

- How are these four classes related to each other?
- Time Hierarchy Theorem implies

$$P \stackrel{\subset}{
eq} EXP$$

• Space Hierarchy Theorem implies

$$L \neq PSPACE$$

• L vs. P? PSPACE vs. EXP?

• Useful convention: Turing Machine configurations. Any point in computation

represented by string:

 $C = \sigma_1 \sigma_2 \dots \sigma_i q \sigma_{i+1} \sigma_{i+2} \dots \sigma_m$ 

 start configuration for single-tape TM on input x: q<sub>start</sub>x<sub>1</sub>x<sub>2</sub>...x<sub>n</sub>

- easy to tell if C yields C' in 1 step
- configuration graph: nodes are configurations, edge (C, C') iff C yields C' in one step
- # configurations for a 2-tape TM (work tape + read-only input) that runs in space t(n)



- if t(n) = c log n, at most
   n x (c log n) x c<sub>0</sub> x c<sub>1</sub><sup>c log n</sup> ≤ n<sup>k</sup>
   configurations.
- can determine if reach q<sub>accept</sub> or q<sub>reject</sub> from start configuration by exploring config. graph of size n<sup>k</sup> (e.g. by DFS)
- Conclude: L ⊂ P

• if t(n) = n<sup>c</sup>, at most n x n<sup>c</sup> x c<sub>0</sub> x c<sub>1</sub><sup>n<sup>c</sup></sup>  $\leq 2^{n^{k}}$ 

configurations.

- can determine if reach q<sub>accept</sub> or q<sub>reject</sub> from start configuration by exploring config. graph of size 2<sup>n<sup>k</sup></sup> (e.g. by DFS)
- Conclude: PSPACE C EXP

• So far:

# $\textbf{L} \subset \textbf{P} \subset \textbf{PSPACE} \subset \textbf{EXP}$

- · believe all containments strict
- know  $L \subsetneq PSPACE, P \subsetneq EXP$
- even before any mention of NP, two **major** unsolved problems:

$$L \stackrel{?}{=} P \qquad P \stackrel{?}{=} PSPACE$$

### A P-complete problem

- We don't know how to prove  $L \neq P$
- But, can identify problems in *P* least likely to be in *L* using *P*-completeness.
- need stronger reduction (why?)
- **logspace reduction**: f computable by DTM that uses O(logn) space, denoted  $gL_1 \leq_L L_2$
- If  $L_2$  is P-complete, then  $L_2$  in L implies L = P



# **Circuit Value (CVAL)**: given a variable-free Boolean circuit (gates $(\lor, \land, \neg, 0, 1)$ , does it output 1?

#### heorem

CVAL is P-complete.

### CVAL is P-complete (proof)

- already argued in P
- L arbitrary language in P, TM M decides L in  $n^k$  steps
- Tableau (configurations written in an array) for machine M on input w:



 Important observation: contents of cell in tableau determined by 3 others above it:



- Can build Boolean circuit STEP
  - input (binary encoding of) 3 cells
  - output (binary encoding of) 1 cell



- each output bit is some function of inputs
- can build circuit for each
- size is independent of size of tableau

### CVAL is P-complete (proof)

Tableau for  $w_1/q_s$ Wn W2 ... ... M on input  $w_2/q_1$ W1 Wn ... ... W ٠ . ... ••

|w|<sup>c</sup> copies of STEP compute row i from i-1



H. Yen (NTUEE)

### CVAL is P-complete (proof)



- First separations (via simulation and diagonalization):  $P \neq EXP$ ,  $L \neq PSPACE$
- First major open questions:  $L \stackrel{?}{=} P$ ,  $P \stackrel{?}{=} PSPACE$
- First complete problems: CVAL is P-complete

