
Theory of Computation
Fall 2012, Midterm Exam.

Due: Nov. 12, 2012

1. (20 pts) For each of the following languages L, state whether it is (1) regular, (2) context-
free but not regular, or (3) not context-free. Prove your answer. Make sure, if you say
that a language is context free, that you show that it is not also regular.

(a) {w ∈ {0, 1}∗ | ∃k ≥ 0 and w is a binary encoding (leading zeros allowed) of 2k+1 }. (E.g.,
001001 ∈ L, for 001001 is the binary encoding of 23 + 1.)
Soultion: (1) Regular. L = 0∗(10 ∪ 10∗1).

(b) {0p1q | 0 ≤ p ≤ q}.
Solution: (2) Context-free but not regular.

(c) {(ambm)nanbn | m,n > 0}.
Solution: (3) Not context-free.

(d) {aibjcjdi | i, j ≥ 0}
Solution: (2) Context-free but not regular.

2. (20 pts) True or False? Give a convincing argument. No penalties for wrong answers.

(a) Let L4 = L1L2L3. If L1 and L3 are not regular and L2 is regular, it is possible that L4 is
regular.
Solution: True. Take L2 = ∅. Then L4 = ∅.

(b) Every subset of a context-free language is context-free.
Solution: False. {anbncn | n ≥ 0} ⊆ a∗b∗c∗ and a∗b∗c∗ is context-free.

(c) It is possible that the intersection of an infinite number of regular languages is not regular.
Solution: True. Let Si = (

∪
1≤j≤i{apj}) ∪ {ak | k ≥ pi}, where pj is the j-th prime

number. E.g., S4 = {a2,a3,a5,a7, a8.a9, a10...}. Clearly, each Si is regular. However,∩
Si = {ap | p is a prime } – not regular.

(d) Given two alphabets Σ and Γ, and a language L over Σ. Let h be a homomorphism
h : Σ∗ → Γ∗. Then h−1(h(L)) = L, where h−1 is the inverse homomorphism of h.
Solution: False. Let Σ = {a, b, c} and Γ = {0, 1}, and h(a) = h(b) = h(c) = 0. Let
L = {a}. Then h(L) = {0}. However, h−1(h(L)) = h−1({0}) = {a, b, c}.

(e) Let M = (Q,Σ, δ, q0, F ) be the minimal DFA recognizing the language L(M) (i.e., the
number of states cannot be reduced). Suppose M ′ is same as M except the initial state is
changed to q( ̸= q0), for some q ∈ Q, i.e., M ′ = (Q,Σ, δ, q, F ). Assuming all states in Q are
reachable from q, then M ′ is the minimal DFA recognizing L(M ′).
Solution: True. Because any two states of M (as well as M ′) are pairwise distinguishable.

3. (10 pts) Define D(L) = {s1s2 | s1as2 ∈ L, s1, s2 ∈ Σ∗, a ∈ Σ}. That is, D(L) is the language
of strings that can be obtained by deleting exactly one symbol from some string in L. Prove in
detail that if L is regular then D(L) is also regular.
Solution: Since L is regular, there exists a DFA

A = (Q,Σ, δ, q0, F )

that accepts L. Construct a new NFA A′ = (Q× {0, 1},Σ, δ′, (q0, 0), F × {1}) where

δ = {(((q, i), σ), (q′, i)), ((q, 0), ϵ), (q′, 1)) | ((q, σ), q′) ∈ δ, i ∈ {0.1}

NFA A′ essentially consists of two copies of A with ϵ-edges from the first copy to the second.
The start state is in the first copy and the final states are all in the second, so every accepting
path of A′ includes exactly one ϵ-edge. Each ϵ-edge serves to delete exactly one symbol from a
string in L; therefore A′ accepts exactly language D(L). We conclude that D(L) is regular.
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4. (15 pts) Let middle be a function that maps from any language L over some alphabet Σ to a
new language as follows:

middle(L) = {x | ∃y, z ∈ Σ∗, (yxz ∈ L)}.

(a) (5 pts) Let L = {w ∈ {a, b}∗ | #a(w) = #b(w)}. What is middle(L)? (Here #a(w) denotes
the number of a’s in w. E.g., #a(ababa) = 3.)
Solution: {a, b}∗

(b) (10 pts) Prove formally that, for any language L, if L is regular then middle(L) is also
regular.
Solution: Idea: Let M be an FA accepting L. The proof is by building two extra copies
of M , both of which mimic all of M ’s transitions except they read no input. From each
state in copy one, there is a transition labeled ϵ to the corresponding state in M , and from
each state in M there is a transition labeled ϵ to the corresponding state in the second
copy. The start state of M∗ is the start state of copy 1. So M∗ begins in the first copy,
performing, without actually reading any input, whatever M could have performed while
reading some initial input string y. At any point, it can guess that its skipped over all the
characters in y. So it jumps to M and reads x. At any point, it can guess that its read all
of x. Then it jumps to the second copy, in which it can do whatever M would have done
on reading z. If it guesses to do that before it actually reads all of x, the path will fail to
accept since it will not be possible to read the rest of the input.

5. (10 pts) Let L be the language over Σ = {a, b} consisting of all words x for which the number
of a’s in x equals the number of b’s in x.

L = {x ∈ Σ∗ | #a(x) = #b(x)}

Let RL be the relation induced by L as discussed in class.

(a) (4 pts) Is aaRLaaa? Is ϵRLab? Why?
Solution: (1) aa and aaa are not RL related, because aabb ∈ L but aaabb ̸∈ L.
(2) ϵRLab is correct.

(b) (6 pts) Use Myhill-Nerode Theorem to show that L is not regular.
Solution: ∀i, j ≥ 0, i ̸= j, ai and aj are not RL related. Hence RL induces an infinite
number of equivalence classes.

6. (10 pts) Let L be the language of the regular expression a∗b∗. Prove formally that any DFA
accepting L must have at least two final states. (Hint: Proof by contradiction.)

Solution: Let M = (Q,Σ, δ, q0, F ) be a DFA accepting L. Since ϵ ∈ L, q0 ∈ F . Let δ̂(q0, ab) =

q1 ∈ F . We claim that q0 ̸= q1. If otherwise (i.e., q0 = q1), then consider δ̂(q0, abab) =

δ̂(q0, ab) = q0 – contradicting the fact that abab ̸∈ L.

7. (15 pts) Answer the following questions:

(a) (10 pts) Prove that L = {0(2n+1)2 | n ≥ 0} is not regular using the Pumping Lemma.

Solution: Idea: Let k be the pumping constant. Consider x = 0(2k+1)2 = u · v · w, with
0 ≤ |v| ≤ k. Then |u · v2 · w| = (2k + 1)2 + |v| ≤ (2k + 1)2 + k < (2(k + 1) + 1)2. Hence,
u · v2 · w ̸∈ L.

(b) (5 pts) Use the above result to show that L′ = {0n2+n | n ≥ 0} is not regular by closure
properties. (Do not use Myhill-Nerode Theorem or the Pumping Lemma; use only (a) and
closure properties of regular languages.)
Solution: Define a homomorphism h(0) = 0000. Then by the closure properties under

homomorphism and concatenation. h(L′) · {0}={04n2+4n+1 | n ≥ 0}=L. Hence, L′ is not
regular.
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