Theory of Computation Fall 2012, Homework # 3

Due: Dec. 22, 2012

- 1. (15 pts) Let $L = \{ \langle M, w \rangle | M \text{ ever moves left while computing } w \}$. Is L recursive? Give a convincing argument.
- 2. (15 pts) Prove that $X = \{ \langle M, w \rangle | M \text{ is a single-tape TM that never modifies the portion of the tape that contains the input <math>w \}$ is not recursive. (Note that $\langle M, w \rangle$ denotes the encoding of M and w together.)
- 3. (15 pts) If $A \leq_m B$ and B is a regular language, does that imply that A is a regular language? Why? Give a convincing argument.
- 4. (15 pts) Is the language $L = \{ \langle M \rangle | M \text{ is a Turing machine with } L(M) \neq \emptyset \}$ recursively enumerabe? Why? Give a convincing argument.
- 5. (20 pts) Let A and B be two disjoint languages over a common alphabet Σ . Say that language C separates A and B if $A \subseteq C$ and $B \subseteq \overline{C}$. (\overline{C} denotes the complement of C, i.e., $\overline{C} = \Sigma^* C$.) Show that if A and B are any two disjoint co-r.e. languages, then there exists a recursive language C that separates A and B. (A language L is co-r.e. if its complement \overline{L} is r.e.)
- 6. (20 pts) Give an example of an undecidable (i.e., non-recursive) subset of 1^{*}. Prove that your answer is correct.