The Post Correspondence Problem

- Given a set, P of pairs of strings:

P={l3h 2 )

where t;, b € X*
- Question: Does there exist a sequence i, iy, - - - i such that:

tiyty -t

n

— byby, - b;,?

Note: the same pair can occur multiple times, i.e. there can be j # m
st. ij = Im.

H. Yen (NTUEE) 1/20



A PCP Example

Example
Let P =

ab.bb;aa.cchaard

(I've numbered the tiles to make it easier to talk about them.)

Does the PCP problem P have a solution?

H. Yen (NTUEE) 2 /20



Another PCP Example

Example
Let P =

ddddd

ddde

o

:

(I've numbered the tiles to make it easier to talk about them.)

Does the PCP problem P have a solution?
e P has a solution iff 3n, (2" mod 5) = 3

@ Yes, let n = 3.

H. Yen (NTUEE)




PCP is undecidable

The PCP problem is undecidable I

Proof sketch
@ Start with a pair that has the initial configuration for a TM on the
bottom and an empty string on top.
@ Include pairs in P whose top strings match the current configuration,
and whose bottom strings build the next configuration.
@ A bunch of details to:
» Account for moving the tape head.

» Extend the tape with blanks when needed.
» Force the first pair of a solution to be the one that gives the initial

configuration
>

A Simplifying Assumption: We'll assume that any solution must start with
tile 1 — we'll call this the Modified Post Correspondence Problem
(MPCP). (Dont worry.) We'll remove this assumption later.

H. Yen (NTUEE) 4/20



Proof — Tile 1

o We'll reduce L, = {M#w | M accepts w} to MPCP.

o Let M#w be a string where M describes a TM and w describes an
input string to M.

@ The first tile will give the initial TM configuration as the bottom
string, and an empty string on top. Wefll use # (with # & I') as the
end marker for configurations.

i = P
Faow# |

H. Yen (NTUEE) 5/ 20



From one configuration to the next

@ At each step, we copy the current configuration from the bottom
string to the upper string, and build the next configuration on the

lower string:
#Co#C1F# ... Cra# L GO . Cea#O#
#FCoFCL1# .. Cra#Ch FCo#FC1#. . Cr 1 #C0:# 1

A configuration looks like acbgcf5.

To calculate the next configuration, we

» Copy « to the upper and lower strings.

» Copy abgc to the upper string and write its successor to the lower
string.

» Copy [ to the upper and lower strings.

The next two slides describe how to handle transitions.

H. Yen (NTUEE)

To copy a and 3 we include the following tile in P for each c € T': [£]

6/ 20



All the Right Moves

For each transition d(q,c) = (¢’, ¢/, R):

@ We add the tile [-X;] to P. This enables the move:

cq
#...#o . #...F#age
#...#agqcf#a #...#ageB#ac'q

@ If ¢ = blank symbol, we also add the tile [%] to handle the case
when the head is moving further into the infinite string of blanks at
the end of the tape.

H. Yen (NTUEE) 7 /20



All the Left Moves

For each transition d(q,c) = (¢’, ¢/, L):

o for each b € I we add the tile [q‘,’gi,] to P. This enables the move:

#... #Ha # ... #abge

... #Fabgef#ag b

i

# ... #Fabgef#a #

e We also add the tile [fq‘/"é,] to P to handle the case when the head is
at the left end of the tape.

H. Yen (NTUEE) 8 /20



The End Game

@ M accepts w iff we can reach a configuration for our MPCP

#C0 .. #Cn_1#

#Co .. -#(-jn—l#agaccepi.ﬁ#

@ Now we have to fix the problem that we've got one more

configuration on the lower tape than the upper one. For each c € T

Caccept

Jaccept C

Jaccept

Jaccept

we add the tiles:

@ These allow us to discard one tape symbol each time we copy the

#C0 ... #qacceptcF#

#Cp. .. #G’acceptc#Q’accept#

configurations until we get to:

So, we add one more tile to our set:

H. Yen (NTUEE)

Qaccepf##

#

9/20



From MPCP to PCP

We need to force our tilel to be the first tile of any solution.
@ Let x be a new symbol (i.e. not in U {#}).

@ For any string s, let xs be the string obtained by inserting a x before
each symbol of s. For example, x(abc) = xax b* c.

@ For any string s, let sx be the string obtained by adding a x before
each symbol of s. For example, (abc)x = a % b * cx.

@ Finally, xsx puts on star between each pair of symbols of s and one

star at the beginning of s and one at the end. For example,
*x(abc)x = *xa * b * c*.

H. Yen (NTUEE) 10 / 20



From MPCP to PCP

@ Given a set of tiles, P for MPCP as described above:

Replace the initial tile, # with e .
FHqow# *FqowFEE
m ;
Replace the final tile, |- 2222 |y | *Tacoemt# % # |
# #

t t

For every other tile, , replace it with ;
-
i
*Hqowd+ . . . o
o Now must be the first tile of any solution because it is the

only tile that starts and ends with the same symbol.
@ We have reduced computational histories for L, to PCP. Hence, PCP

is undecidable.

H. Yen (NTUEE)

11 /20



The CFG Ambiguity Problem

o Use the lists []a, [$5]b, [52

11
o1 le» [T]d

The grammar is

»S—>A|B

> A— 1Aa | 0Ab | 010Ac | 11Ad | ¢

» B— 10Ba | 10Bb | 01Bc | 1Bd | ¢

Each string has a unique derivation from A and B
Ambiguity can only come from S.

It is undecidable to determine whether a given CFG G is ambiguous. |

H. Yen (NTUEE)

it
R

p)



Is the Intersection of Two CFL's Empty?

Consider the two list languages from a PCP instance. They have an empty
intersection if and only if the PCP instance has no solution.

Given two CFLs Ly and Ly, "L N Ly = (0?” is undecidable

H. Yen (NTUEE)



Complements of List Languages

@ We can get other undecidability results about CFL's if we first
establish that the complement of a list language is a CFL.

@ PDA is easier approach.

@ Accept all ill-formed input (not a sequence of symbols followed by
indexes) using the state.

@ For inputs that begin with symbols from the alphabet of the PCP
instance, store them on the stack, accepting as we go.

@ When index symbols start, pop the stack, making sure that the right
strings were found on top of the stack; again, keep accepting untilK

@ When we expose the bottom-of-stack marker, we have found a
sequence of strings from the PCP list and their matching indexes.
This string is not in the complement of the list language, so don't
accept.

@ If more index symbols come in, then we have a mismatch, so start
accepting again and keep on accepting.

H. Yen (NTUEE) 14 / 20



Is a CFL Equal to X*?

Take an instance of PCP, say lists A and B. The union of the

complements of their two list languages is £* if the instance has no
solution, and something less if there is a solution.

Given a CFL L, "L = X*?" is undecidable |

H. Yen (NTUEE)



Unrestricted Grammars

e A grammar (V, T,S, P) is unrestricted if all the productions are of
the form u — v, where uisin (VU T)" and visin (VU T)*.
» Basically, no restrictions imposed on productions
» Any number of variables on the left and right-hand sides
> Only restriction is that € cannot appear on the left side of a production

@ Any language generated by an unrestricted grammar is recursively
enumerable

H. Yen (NTUEE) 16 / 20



Context-Sensitive Grammars

@ Between the unrestricted grammars and the "restricted” CFGs, there
is a variety of "somewhat restricted” grammars

@ A grammar is context-sensitive if all productions are of the form
x =y, where x,y are in (VU T)" and |x| < |y|

» Fundamental property:
* grammar is non-contracting— i.e., the length of successive sentential
forms can never decrease
» Why " context-sensitive” ?

* All productions can be rewritten in a normal form xAy — xvy
* Effectively, " A can be replaced by v only in the context of a preceding x

and a following y”

H. Yen (NTUEE) 17 / 20



An Example

CSG for {a"b"c"|n > 1}
S — abclaAbc
Ab — bA
Ac — Bbcc
bB — Bb
aB — aalaaA

S = aAbc = abAc = abBbcc = aBbbcc = aaAbbcc = aabAbcc =
aabbAcc = aabbBbccc = aabBbbccc = aaBbbbccc = aaabbbccc

A and B are "messengers’- an A is created on the left, travels to the right
to the first c, creates another b and c. Then sends B back to create the
corresponding a. Similar to the way one would program a TM to accept
the language.

H. Yen (NTUEE) 18 / 20



Linear-Bounded Automata

@ A limited TM in which tape use is restricted

» Use only part of the tape occupied by the input
function of the input

> l.e., has an unbounded tape, but the mount that can be used is a

@ LBA is assumed to be nondeterministic

* Restrict usable part of tape to exactly the cells taken by the input

L is accepted by some linear bounded automaton iff there is a
context-sensitive grammar that generates L.

H. Yen (NTUEE)




The Expanded Chomsky Hierarchy

Finite Automata
H. Yen (NTUEE)



