The Post Correspondence Problem

- Given a set, P of pairs of strings:

$$P = \{ [\frac{t_1}{b_1}], \frac{t_2}{b_2}], \cdots, \frac{t_k}{b_k}] \}$$

where $t_i, b_i \in \Sigma^*$

- **Question:** Does there exist a sequence i_1, i_2, \dots, i_n such that:

$$t_{i_1}t_{i_2}\cdots t_{i_n}=b_{i_1}b_{i_2}\cdots b_{i_n}?$$

Note: the same pair can occur multiple times, i.e. there can be $j \neq m$ s.t. $i_j = i_m$.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

A PCP Example

(I've numbered the tiles to make it easier to talk about them.)

Does the PCP problem P have a solution?

.

Another PCP Example

(I've numbered the tiles to make it easier to talk about them.)

Does the PCP problem P have a solution?

- P has a solution iff $\exists n, (2^n \mod 5) = 3$
- Yes, let n = 3.

(< 3)</pre>

PCP is undecidable

Theorem

The PCP problem is undecidable

Proof sketch

- Start with a pair that has the initial configuration for a TM on the bottom and an empty string on top.
- Include pairs in P whose top strings match the current configuration, and whose bottom strings build the next configuration.
- A bunch of details to:
 - Account for moving the tape head.
 - Extend the tape with blanks when needed.
 - Force the first pair of a solution to be the one that gives the initial configuration
 - Þ ...

A Simplifying Assumption: We'll assume that any solution must start with tile 1 – we'll call this the **Modified Post Correspondence Problem** (MPCP). (Dont worry.) We'll remove this assumption later.

Proof – Tile 1

- We'll reduce $L_u = \{M \# w \mid M \text{ accepts } w\}$ to MPCP.
- Let M # w be a string where M describes a TM and w describes an input string to M.
- The first tile will give the initial TM configuration as the bottom string, and an empty string on top. Wefll use # (with $\# \notin \Gamma$) as the end marker for configurations.

$$\begin{array}{c} \# \\ \# q_0 w \# \end{array}_1 \in P$$

<ロト <回ト < 回ト < 回ト < 回ト = 三日

From one configuration to the next

• At each step, we copy the current configuration from the bottom string to the upper string, and build the next configuration on the lower string:

$$\begin{array}{c} \#C_0 \#C_1 \# \dots C_{k-1} \# \\ \#C_0 \#C_1 \# \dots C_{k-1} \# C_k \end{array} \rightarrow \begin{array}{c} \#C_0 \#C_1 \# \dots C_{k-1} \# C_k \# \\ \#C_0 \#C_1 \# \dots C_{k-1} \# C_k \# C_{k+1} \end{array}$$

- A configuration looks like $\alpha bqc\beta$.
- To calculate the next configuration, we
 - Copy α to the upper and lower strings.
 - Copy *abqc* to the upper string and write its successor to the lower string.
 - Copy β to the upper and lower strings.
- To copy α and β we include the following tile in P for each $c \in \Gamma$: $\begin{bmatrix} c \\ c \end{bmatrix}$
- The next two slides describe how to handle transitions.

All the Right Moves

For each transition $\delta(q, c) = (q', c', R)$:

• We add the tile $\left[\frac{qc}{c'a'}\right]$ to P. This enables the move:

 If c = blank symbol, we also add the tile [^{q#}/_{c'q'#}] to handle the case when the head is moving further into the infinite string of blanks at the end of the tape.

All the Left Moves

For each transition $\delta(q, c) = (q', c', L)$:

• for each $b \in \Gamma$ we add the tile $\left[\frac{qbc}{q'bc'}\right]$ to P. This enables the move:

• We also add the tile $\left[\frac{\#qc}{\#q'c'}\right]$ to P to handle the case when the head is at the left end of the tape.

The End Game

• *M* accepts *w* iff we can reach a configuration for our MPCP

 Now we have to fix the problem that we've got one more configuration on the lower tape than the upper one. For each c ∈ Γ

we add the tiles:

H. Yen (NTUEE)

• These allow us to discard one tape symbol each time we copy the

configurations until we get to:

So, we add one more tile to our set:

From MPCP to PCP

- We need to force our tile1 to be the first tile of any solution.
- Let \star be a new symbol (i.e. not in $\Gamma \cup \{\#\}$).
- For any string s, let *s be the string obtained by inserting a * before each symbol of s. For example, *(abc) = *a * b * c.
- For any string s, let s* be the string obtained by adding a * before each symbol of s. For example, (abc)* = a * b * c*.
- Finally, *s* puts on star between each pair of symbols of s and one star at the beginning of s and one at the end. For example, *(abc)* = *a * b * c*.

From MPCP to PCP

• Given a set of tiles, P for MPCP as described above:

• Now must be the first tile of any solution because it is the only tile that starts and ends with the same symbol.

• We have reduced computational histories for *L_u* to PCP. Hence, PCP is undecidable.

The CFG Ambiguity Problem

• Use the lists $\left[\frac{1}{10}\right]_a, \left[\frac{0}{10}\right]_b, \left[\frac{010}{01}\right]_c, \left[\frac{11}{1}\right]_d$

The grammar is

- $S \rightarrow A \mid B$
- $\blacktriangleright \ A \rightarrow 1Aa \mid 0Ab \mid 010Ac \mid 11Ad \mid \epsilon$
- $\blacktriangleright \ B \rightarrow 10Ba \mid 10Bb \mid 01Bc \mid 1Bd \mid \epsilon$

Each string has a unique derivation from A and BAmbiguity can only come from S.

Theorem

It is undecidable to determine whether a given CFG G is ambiguous.

米田 とくほと くほど

Is the Intersection of Two CFL's Empty?

Consider the two list languages from a PCP instance. They have an empty intersection if and only if the PCP instance has no solution.

I heorem

Given two CFLs L_1 and L_2 , " $L_1 \cap L_2 = \emptyset$?" is undecidable

Complements of List Languages

- We can get other undecidability results about CFL's if we first establish that the complement of a list language is a CFL.
- PDA is easier approach.
- Accept all ill-formed input (not a sequence of symbols followed by indexes) using the state.
- For inputs that begin with symbols from the alphabet of the PCP instance, store them on the stack, accepting as we go.
- When index symbols start, pop the stack, making sure that the right strings were found on top of the stack; again, keep accepting untilK
- When we expose the bottom-of-stack marker, we have found a sequence of strings from the PCP list and their matching indexes. This string is not in the complement of the list language, so don't accept.
- If more index symbols come in, then we have a mismatch, so start accepting again and keep on accepting.

イロト イポト イヨト イヨト

Take an instance of PCP, say lists A and B. The union of the complements of their two list languages is Σ^* if the instance has no solution, and something less if there is a solution.

I heorem

Given a CFL L, " $L = \Sigma^*$?" is undecidable

Unrestricted Grammars

- A grammar (V, T, S, P) is unrestricted if all the productions are of the form u → v, where u is in (V ∪ T)⁺ and v is in (V ∪ T)^{*}.
 - Basically, no restrictions imposed on productions
 - Any number of variables on the left and right-hand sides
 - \blacktriangleright Only restriction is that ϵ cannot appear on the left side of a production
- Any language generated by an unrestricted grammar is recursively enumerable

- 4 目 ト - 4 日 ト - 4 日 ト

Context-Sensitive Grammars

- Between the unrestricted grammars and the "restricted" CFGs, there is a variety of "somewhat restricted" grammars
- A grammar is context-sensitive if all productions are of the form $x \to y$, where x, y are in $(V \cup T)^+$ and $|x| \le |y|$
 - Fundamental property:
 - grammar is non-contracting— i.e., the length of successive sentential forms can never decrease
 - Why "context-sensitive"?
 - * All productions can be rewritten in a normal form $xAy \rightarrow xvy$
 - ★ Effectively, "A can be replaced by v only in the context of a preceding x and a following y"

ヘロト 人間ト 人間ト 人間ト

An Example

CSG for $\{a^n b^n c^n | n \ge 1\}$ $S \to abc | aAbc$ $Ab \to bA$ $Ac \to Bbcc$ $bB \to Bb$ $aB \to aa | aaA$

 $S \Rightarrow aAbc \Rightarrow abAc \Rightarrow abBbcc \Rightarrow aBbbcc \Rightarrow aaAbbcc \Rightarrow aabAbcc \Rightarrow aabbAcc \Rightarrow aabbBbccc \Rightarrow aabbBbccc \Rightarrow aabbbbccc \Rightarrow aaabbbbccc$

A and B are "messengers"- an A is created on the left, travels to the right to the first c, creates another b and c. Then sends B back to create the corresponding a. Similar to the way one would program a TM to accept the language.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Linear-Bounded Automata

• A limited TM in which tape use is restricted

- Use only part of the tape occupied by the input
- I.e., has an unbounded tape, but the mount that can be used is a function of the input
 - * Restrict usable part of tape to exactly the cells taken by the input
- LBA is assumed to be nondeterministic

Theorem

L is accepted by some linear bounded automaton iff there is a context-sensitive grammar that generates L.

The Expanded Chomsky Hierarchy

Recursively Enumerable Languages

Recursive Languages

Context Sensitive Languages

Context Free Languages

Deterministic CFL

Regular Languages

Turing Machine

Turing Machine that halts

Linear Bounded Automata

Push Down Automata

Deterministic PDA

Finite Automata

소리가 소문가 소문가 소문가 ...

3