
The Post Correspondence Problem

- Given a set, P of pairs of strings:

P = {[t1
b1

],
t2
b2

], · · · , tk
bk

]}

where ti , bi ∈ Σ∗

- Question: Does there exist a sequence i1, i2, · · · in such that:

ti1ti2 · · · tin = bi1bi2 · · · bin?

Note: the same pair can occur multiple times, i.e. there can be j 6= m
s.t. ij = im.

H. Yen (NTUEE) 1 / 20

A PCP Example

Example

Let P =

(I’ve numbered the tiles to make it easier to talk about them.)

Does the PCP problem P have a solution?

H. Yen (NTUEE) 2 / 20

Another PCP Example

Example

Let P =

(I’ve numbered the tiles to make it easier to talk about them.)

Does the PCP problem P have a solution?

P has a solution iff ∃n, (2n mod 5) = 3

Yes, let n = 3.

H. Yen (NTUEE) 3 / 20

PCP is undecidable

Theorem

The PCP problem is undecidable

Proof sketch

Start with a pair that has the initial configuration for a TM on the
bottom and an empty string on top.

Include pairs in P whose top strings match the current configuration,
and whose bottom strings build the next configuration.
A bunch of details to:

I Account for moving the tape head.
I Extend the tape with blanks when needed.
I Force the first pair of a solution to be the one that gives the initial

configuration
I ...

A Simplifying Assumption: We’ll assume that any solution must start with
tile 1 – we’ll call this the Modified Post Correspondence Problem
(MPCP). (Dont worry.) We’ll remove this assumption later.

H. Yen (NTUEE) 4 / 20

Proof – Tile 1

We’ll reduce Lu = {M#w | M accepts w} to MPCP.

Let M#w be a string where M describes a TM and w describes an
input string to M.

The first tile will give the initial TM configuration as the bottom
string, and an empty string on top. Wefll use # (with # 6∈ Γ) as the
end marker for configurations.

H. Yen (NTUEE) 5 / 20

From one configuration to the next

At each step, we copy the current configuration from the bottom
string to the upper string, and build the next configuration on the
lower string:

A configuration looks like αbqcβ.

To calculate the next configuration, we
I Copy α to the upper and lower strings.
I Copy αbqc to the upper string and write its successor to the lower

string.
I Copy β to the upper and lower strings.

To copy α and β we include the following tile in P for each c ∈ Γ: [cc]

The next two slides describe how to handle transitions.

H. Yen (NTUEE) 6 / 20

All the Right Moves

For each transition δ(q, c) = (q′, c ′,R):

We add the tile [qc
c ′q′] to P. This enables the move:

If c = blank symbol, we also add the tile [q#
c ′q′#] to handle the case

when the head is moving further into the infinite string of blanks at
the end of the tape.

H. Yen (NTUEE) 7 / 20

All the Left Moves

For each transition δ(q, c) = (q′, c ′, L):

for each b ∈ Γ we add the tile [qbc
q′bc ′] to P. This enables the move:

We also add the tile [#qc
#q′c ′] to P to handle the case when the head is

at the left end of the tape.

H. Yen (NTUEE) 8 / 20

The End Game
M accepts w iff we can reach a configuration for our MPCP

Now we have to fix the problem that we’ve got one more
configuration on the lower tape than the upper one. For each c ∈ Γ

we add the tiles:
These allow us to discard one tape symbol each time we copy the

configurations until we get to:

So, we add one more tile to our set:
H. Yen (NTUEE) 9 / 20

From MPCP to PCP

We need to force our tile1 to be the first tile of any solution.

Let ? be a new symbol (i.e. not in Γ ∪ {#}).

For any string s, let ?s be the string obtained by inserting a ? before
each symbol of s. For example, ?(abc) = ?a ? b ? c .

For any string s, let s? be the string obtained by adding a ? before
each symbol of s. For example, (abc)? = a ? b ? c?.

Finally, ?s? puts on star between each pair of symbols of s and one
star at the beginning of s and one at the end. For example,
?(abc)? = ?a ? b ? c?.

H. Yen (NTUEE) 10 / 20

From MPCP to PCP

Given a set of tiles, P for MPCP as described above:

Now must be the first tile of any solution because it is the
only tile that starts and ends with the same symbol.

We have reduced computational histories for Lu to PCP. Hence, PCP
is undecidable.

H. Yen (NTUEE) 11 / 20

The CFG Ambiguity Problem

Use the lists [1
10]a, [

0
10]b, [

010
01]c , [

11
1]d

The grammar is
I S → A | B
I A→ 1Aa | 0Ab | 010Ac | 11Ad | ε
I B → 10Ba | 10Bb | 01Bc | 1Bd | ε

Each string has a unique derivation from A and B
Ambiguity can only come from S .

Theorem

It is undecidable to determine whether a given CFG G is ambiguous.

H. Yen (NTUEE) 12 / 20

Is the Intersection of Two CFL’s Empty?

Consider the two list languages from a PCP instance. They have an empty
intersection if and only if the PCP instance has no solution.

Theorem

Given two CFLs L1 and L2, ”L1 ∩ L2 = ∅?” is undecidable

H. Yen (NTUEE) 13 / 20

Complements of List Languages

We can get other undecidability results about CFL’s if we first
establish that the complement of a list language is a CFL.

PDA is easier approach.

Accept all ill-formed input (not a sequence of symbols followed by
indexes) using the state.

For inputs that begin with symbols from the alphabet of the PCP
instance, store them on the stack, accepting as we go.

When index symbols start, pop the stack, making sure that the right
strings were found on top of the stack; again, keep accepting untilK

When we expose the bottom-of-stack marker, we have found a
sequence of strings from the PCP list and their matching indexes.
This string is not in the complement of the list language, so don’t
accept.

If more index symbols come in, then we have a mismatch, so start
accepting again and keep on accepting.

H. Yen (NTUEE) 14 / 20

Is a CFL Equal to Σ∗?

Take an instance of PCP, say lists A and B. The union of the
complements of their two list languages is Σ∗ if the instance has no
solution, and something less if there is a solution.

Theorem

Given a CFL L, ”L = Σ∗?” is undecidable

H. Yen (NTUEE) 15 / 20

Unrestricted Grammars

A grammar (V ,T ,S ,P) is unrestricted if all the productions are of
the form u → v , where u is in (V ∪ T)+ and v is in (V ∪ T)∗.

I Basically, no restrictions imposed on productions
I Any number of variables on the left and right-hand sides
I Only restriction is that ε cannot appear on the left side of a production

Any language generated by an unrestricted grammar is recursively
enumerable

H. Yen (NTUEE) 16 / 20

Context-Sensitive Grammars

Between the unrestricted grammars and the ”restricted” CFGs, there
is a variety of ”somewhat restricted” grammars

A grammar is context-sensitive if all productions are of the form
x → y , where x , y are in (V ∪ T)+ and |x | ≤ |y |

I Fundamental property:

F grammar is non-contracting– i.e., the length of successive sentential
forms can never decrease

I Why ”context-sensitive”?

F All productions can be rewritten in a normal form xAy → xvy
F Effectively, ”A can be replaced by v only in the context of a preceding x

and a following y”

H. Yen (NTUEE) 17 / 20

An Example

CSG for {anbncn|n ≥ 1}

S → abc|aAbc

Ab → bA

Ac → Bbcc

bB → Bb

aB → aa|aaA

S ⇒ aAbc ⇒ abAc ⇒ abBbcc ⇒ aBbbcc ⇒ aaAbbcc ⇒ aabAbcc ⇒
aabbAcc ⇒ aabbBbccc ⇒ aabBbbccc ⇒ aaBbbbccc ⇒ aaabbbccc

A and B are ”messengers”- an A is created on the left, travels to the right
to the first c, creates another b and c. Then sends B back to create the
corresponding a. Similar to the way one would program a TM to accept
the language.

H. Yen (NTUEE) 18 / 20

Linear-Bounded Automata

A limited TM in which tape use is restricted
I Use only part of the tape occupied by the input
I I.e., has an unbounded tape, but the mount that can be used is a

function of the input
F Restrict usable part of tape to exactly the cells taken by the input

LBA is assumed to be nondeterministic

Theorem

L is accepted by some linear bounded automaton iff there is a
context-sensitive grammar that generates L.

H. Yen (NTUEE) 19 / 20

The Expanded Chomsky Hierarchy

H. Yen (NTUEE) 20 / 20

