
Time Complexity

Definition

Let t : n→ n be a function.

TIME (t(n)) = {L|L is a language decidable by a O(t(n))
deterministic TM}
NTIME (t(n)) = {L|L is a language decidable by a O(t(n))
non-deterministic TM}

H. Yen (NTUEE) Theory of Computation Fall 2012 1 / 33

Polynomial Time

Definition

P =
⋃
k

TIME (nk)

Example

{anbncn|n ≥ 0} ∈ P

Which are in P and Which arent?

H. Yen (NTUEE) Theory of Computation Fall 2012 2 / 33

Nondeterministic Polynomial Time

Definition

NP =
⋃
k

NTIME (nk)

Example

the Traveling Salesman Problem (TSP) problem
the Integer Linear Programming (ILP) problem

Claim: P ⊆ NP
Proof: A deterministic Turing machine is a special case of
non-deterministic Turing machines.

H. Yen (NTUEE) Theory of Computation Fall 2012 3 / 33

Exponential Time

Definition

EXPTIME =
⋃
k

TIME (2n
k
)

H. Yen (NTUEE) Theory of Computation Fall 2012 4 / 33

Space Complexity

Definition

Let s : n→ n be a function.

DSPACE (s(n)) = {L|L is a language decidable by a O(s(n)) space
deterministic TM}
NSPACE (s(n)) = {L|L is a language decidable by a O(s(n)) space
non-deterministic TM}

3-Tape TM

H. Yen (NTUEE) Theory of Computation Fall 2012 5 / 33

Logarithmic Space

Definition

L = DSPACE (log n)

NL = NSPACE (log n)

H. Yen (NTUEE) Theory of Computation Fall 2012 6 / 33

Polynomial Space

Definition

PSPACE =
⋃
k

DSPACE (nk)

Example

{anbncn|n ≥ 0} ∈ PSPACE

Claim: P ⊆ PSPACE
Proof: A TM which runs in time t(n) can use at most t(n) space.

H. Yen (NTUEE) Theory of Computation Fall 2012 7 / 33

Observation

Theorem

PSPACE ⊆ EXPTIME

Proof.

A machine which uses polynomial space has at most exponential number
of configurations (remember?). As deterministic machine that halts may
not repeat a configuration, its running time is bounded by the number of
possible configurations.

H. Yen (NTUEE) Theory of Computation Fall 2012 8 / 33

Conjectured Relations Among Deterministic Classes

H. Yen (NTUEE) Theory of Computation Fall 2012 9 / 33

Two Important Theorems Regarding Space Complexity

Theorem (Savitch’s Theorem)

∀S(n) ≥ log(n),NSPACE (S(n)) ⊆ SPACE (S(n)2)

Theorem (Immerman’s Theorem)

∀S(n) ≥ log(n),NSPACE (s(n)) = co − NSPACE (s(n))

H. Yen (NTUEE) Theory of Computation Fall 2012 10 / 33

Time and Space

Recall: TIME (f (n)), SPACE (s(n))

Questions:

how are these classes related to each other?
how do we define robust time and space classes?
what problems are contained in these classes? complete for these
classes?

H. Yen (NTUEE) Theory of Computation Fall 2012 11 / 33

Linear Speedup

Theorem

Suppose TM M decides language L in time f (n). Then for any ε > 0,
there exists TM M ′ that decides L in time ε · f (n) + n + 2.

Proof Idea:

compress input onto fresh tape:

H. Yen (NTUEE) Theory of Computation Fall 2012 12 / 33

Linear Speedup (cont’d)

simulate M, m steps at a time

accounting:

part 1 (copying): n + 2 steps
part 2 (simulation): 6(f (n)/m)
set m = 6/ε
total: ε · f (n) + n + 2

H. Yen (NTUEE) Theory of Computation Fall 2012 13 / 33

Hierarchy Theorems

Does genuinely more time permit us to decide new languages?

how can we construct a language L that is not in TIME (f (n))

idea: same as ”HALT undecidable” diagonalization and simulation

H. Yen (NTUEE) Theory of Computation Fall 2012 14 / 33

Time Hierarchy Theorem

H. Yen (NTUEE) Theory of Computation Fall 2012 15 / 33

Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem)

For every proper complexity function f (n) ≥ n,

TIME (f (n))
⊂
6= TIME (f (2n)3).

Proper complexity function (also known as (fully) time-constructible
function):

f (n) ≥ f (n − 1) for all n

there exists a TM M that outputs exactly f (n) symbols on input 1n,
and runs in time O(f (n) + n) and space O(f (n)).

includes all reasonable functions we will work with .
logn,

√
n, n2, 2n, n!,

If f and g are proper then f + g , fg , f (g), f g , 2g are all proper.

can mostly ignore, but be aware it is a genuine concern.

Theorem: ∃ non-proper f such that TIME (f (n)) = TIME (2f (n)).

H. Yen (NTUEE) Theory of Computation Fall 2012 16 / 33

Proof of Time Hierarchy Theorem

SIM is TM deciding language {< M, x >: M accepts x in ≤ f (|x |)
steps }
Claim: SIM runs in time g(n) = f (n)3.

define new TM D: on input < M >

if SIM accepts < M,M >, reject
if SIM rejects < M,M >, accept.

D runs in time g(2n)

suppose M in TIME (f (n)) decides L(D)

M(< M >) = SIM(< M,M >) 6= D(< M >)
but M(< M >) = D(< M >)

contradiction.

H. Yen (NTUEE) Theory of Computation Fall 2012 17 / 33

Space Hierarchy Theorem

Theorem (Time Hierarchy Theorem)

For every proper complexity function f (n) ≥ log2n,

DSPACE (f (n))
⊂
6= DSPACE (f (n)log2n).

H. Yen (NTUEE) Theory of Computation Fall 2012 18 / 33

Robust Time and Space Classes

What is meant by ”robust” class?

no formal definition

reasonable changes to model of computation shouldnt change class

should allow ”modular composition”

calling subroutine in class (for classes closed under complement ...)

Examples:

L = DSPACE (logn)

PSPACE =
⋃
k

DSPACE (nk)

P =
⋃
k

DTIME (nk)

EXP =
⋃
k

DTIME (2n
k
)

H. Yen (NTUEE) Theory of Computation Fall 2012 19 / 33

Relationships between classes

How are these four classes related to each other?

Time Hierarchy Theorem implies

P
⊂
6= EXP

Space Hierarchy Theorem implies

L
⊂
6= PSPACE

L vs. P? PSPACE vs. EXP?

H. Yen (NTUEE) Theory of Computation Fall 2012 20 / 33

Relationships between classes

H. Yen (NTUEE) Theory of Computation Fall 2012 21 / 33

Relationships between classes

H. Yen (NTUEE) Theory of Computation Fall 2012 22 / 33

Relationships between classes

H. Yen (NTUEE) Theory of Computation Fall 2012 23 / 33

Relationships between classes

H. Yen (NTUEE) Theory of Computation Fall 2012 24 / 33

Relationships between classes

H. Yen (NTUEE) Theory of Computation Fall 2012 25 / 33

A P-complete problem

We don’t know how to prove L 6= P

But, can identify problems in P least likely to be in L using
P-completeness.

need stronger reduction (why?)

logspace reduction: f computable by DTM that uses O(logn)
space, denoted gL1 ≤L L2

If L2 is P-complete, then L2 in L implies L = P

H. Yen (NTUEE) Theory of Computation Fall 2012 26 / 33

A P-complete problem

Circuit Value (CVAL): given a variable-free Boolean circuit (gates
(∨,∧,¬, 0, 1), does it output 1?

Theorem

CVAL is P-complete.

H. Yen (NTUEE) Theory of Computation Fall 2012 27 / 33

CVAL is P-complete (proof)

already argued in P

L arbitrary language in P, TM M decides L in nk steps

H. Yen (NTUEE) Theory of Computation Fall 2012 28 / 33

CVAL is P-complete (proof)

H. Yen (NTUEE) Theory of Computation Fall 2012 29 / 33

CVAL is P-complete (proof)

H. Yen (NTUEE) Theory of Computation Fall 2012 30 / 33

CVAL is P-complete (proof)

H. Yen (NTUEE) Theory of Computation Fall 2012 31 / 33

CVAL is P-complete (proof)

H. Yen (NTUEE) Theory of Computation Fall 2012 32 / 33

Summary

First separations (via simulation and diagonalization):
P 6= EXP, L 6= PSPACE

First major open questions:

L
?
= P, P

?
= PSPACE

First complete problems: CVAL is P-complete

H. Yen (NTUEE) Theory of Computation Fall 2012 33 / 33

