Time Complexity

Let t : n — n be a function.

e TIME(t(n)) = {L|L is a language decidable by a O(t(n))
deterministic TM}

e NTIME(t(n)) = {L|L is a language decidable by a O(t(n))
non-deterministic TM}

H. Yen (NTUEE) Theory of Computation Fall 2012 1/33

Polynomial Time

P = TIME(n¥)
k

{a"b"c"|n>0} € P |

Which are in P and Which arent?

Minimum The Towers The Halting
Spann‘in? Tree of Hanoi Problern

T Al @

v % x

H. Yen (NTUEE) Theory of Computation Fall 2012 2/33

Nondeterministic Polynomial Time

NP = J NTIME(n*)

k V.
Example
the Traveling Salesman Problem (TSP) problem
the Integer Linear Programming (ILP) problem
Claim: P C NP

Proof: A deterministic Turing machine is a special case of
non-deterministic Turing machines.

H. Yen (NTUEE) Theory of Computation Fall 2012 3/33

Exponential Time

EXPTIME = | J TIME(2"")
k

H. Yen (NTUEE) Theory of Computation Fall 2012 4 /33

Space Complexity
[Definition]

Let s: n — n be a function.

e DSPACE(s(n)) = {L|L is a language decidable by a O(s(n)) space
deterministic TM}

o NSPACE(s(n)) = {L|L is a language decidable by a O(s(n)) space
non-deterministic TM}

3-Tape TM

=
e

H. Yen (NTUEE)

Theory of Computation Fall 2012 5/33

Logarithmic Space

L = DSPACE (log n)

NL = NSPACE(log n)

H. Yen (NTUEE) Theory of Computation Fall 2012 6 /33

Polynomial Space

PSPACE = | | DSPACE(n*)
k

{a"b"c"|n > 0} € PSPACE \

Claim: P C PSPACE
Proof: A TM which runs in time t(n) can use at most t(n) space.

H. Yen (NTUEE) Theory of Computation Fall 2012 7/33

©)
N
®d
=
<
o
=5
(@)
=

PSPACE C EXPTIME

A machine which uses polynomial space has at most exponential number
of configurations (remember?). As deterministic machine that halts may
not repeat a configuration, its running time is bounded by the number of
possible configurations. Ol

H. Yen (NTUEE) Theory of Computation Fall 2012 8 /33

Conjectured Relations Among Deterministic Classes

EXPTIME

H. Yen (NTUEE) Theory of Computation Fall 2012 9 /33

Two Important Theorems Regarding Space Complexity

VS(n) > log(n), NSPACE(S(n)) C SPACE(S(n)?) \
VS(n) > log(n), NSPACE(s(n)) = co — NSPACE(s(n)) \

H. Yen (NTUEE) Theory of Computation Fall 2012 10 / 33

Time and Space

e Recall: TIME(f(n)), SPACE(s(n))

@ Questions:
e how are these classes related to each other?
e how do we define robust time and space classes?
e what problems are contained in these classes? complete for these

classes?

H. Yen (NTUEE) Theory of Computation Fall 2012 11 /33

Linear Speedup

Suppose TM M decides language L in time f(n). Then for any ¢ > 0,
there exists TM M’ that decides L in time ¢ - f(n) + n+ 2.

Proof Idea:
@ compress input onto fresh tape:

lafolabblafala] [[|

‘aba‘bba‘aa_‘ ‘ ‘

H. Yen (NTUEE) Theory of Computation Fall 2012 12 / 33

Linear Speedup (cont'd)

@ simulate M, m steps at a time
|b|b ‘a ‘a |b|a ‘b‘a ‘a |a ‘b‘
m ﬁ m
|abb ‘ aab | aba ‘ aab | aba ‘

-4 (L,R,R,L) steps to read relevant symbols,
‘remember” in state

-2 (L,Ror R,L)to make M’s changes

@ accounting;:

part 1 (copying): n+ 2 steps
part 2 (simulation): 6(f(n)/m)
set m=6/¢

total: €-f(n)+n+2

H. Yen (NTUEE) Theory of Computation

Fall 2012

13 /33

Hierarchy Theorems

@ Does genuinely more time permit us to decide new languages?
@ how can we construct a language L that is not in TIME(f(n))

@ idea: same as "HALT undecidable” diagonalization and simulation

H. Yen (NTUEE) Theory of Computation Fall 2012 14 / 33

Time Hierarchy Theorem

Turing
Machines

|

D: n|Y|n|Y|Y|n]|Y]

H. Yen (NTUEE)

box (M, x): does M
accept x in time f(n)?

n

« TM SIM tells us
yes/no for each box
in time g(n)

« rows include all of
TIME(f(n))

« construct TM D
running in time g(2n)
that is not in table

Theory of Computation Fall 2012 15 / 33

Time Hierarchy Theorem

For every proper complexity function f(n) > n,

TIME(f(n)) % TIME(f(2n)?).

Proper complexity function (also known as (fully) time-constructible
function):
e f(n) > f(n—1) forall n
@ there exists a TM M that outputs exactly f(n) symbols on input 17,
and runs in time O(f(n) + n) and space O(f(n)).
@ includes all reasonable functions we will work with .

logn,/n,n?,2",n!, ...
If f and g are proper then f + g, fg, f(g), f&é,2€ are all proper.

@ can mostly ignore, but be aware it is a genuine concern.
o Theorem: 3 non-proper f such that TIME(f(n)) = TIME(2f(n)).

H. Yen (NTUEE) Theory of Computation Fall 2012 16 / 33

Proof of Time Hierarchy Theorem

SIM is TM deciding language {< M, x >: M accepts x in < f(|x]|)
steps }

Claim: SIM runs in time g(n) = f(n)3.

o define new TM D: on input < M >

o if SIM accepts < M, M >, reject
o if SIM rejects < M, M >, accept.

D runs in time g(2n)

suppose M in TIME(f(n)) decides L(D)
o M(<M>)=SIM(< M,M >)+# D(< M >)
o but M(< M >)=D(< M >)

contradiction.

H. Yen (NTUEE) Theory of Computation Fall 2012 17 / 33

Space Hierarchy Theorem

For every proper complexity function f(n) > logan,
C
DSPACE(f(n)) # DSPACE(f (n)logan).

H. Yen (NTUEE) Theory of Computation Fall 2012 18 / 33

Robust Time and Space Classes

What is meant by "robust” class?
@ no formal definition
@ reasonable changes to model of computation shouldnt change class
@ should allow " modular composition”
o calling subroutine in class (for classes closed under complement ...)
Examples:

L = DSPACE (logn)

PSPACE = |_] DSPACE(n*)
k

P = J DTIME(n*)
k

EXP = | J DTIME(2"")
k

H. Yen (NTUEE) Theory of Computation Fall 2012 19 / 33

Relationships between classes

How are these four classes related to each other?

Time Hierarchy Theorem implies

C
P % EXP

Space Hierarchy Theorem implies

C
L # PSPACE

L vs. P? PSPACE vs. EXP?

H. Yen (NTUEE) Theory of Computation Fall 2012 20 /33

Relationships between classes

» Useful convention: Turing Machine
configurations. Any point in computation

(o [0 | = [or [om] = Jom |-

ﬁ state = q

represented by string:
C=0,0,...0,q0;,40i,5... O,
« start configuration for single-tape TM on
INpUt X: qgiariXiXo---X,

H. Yen (NTUEE) Theory of Computation Fall 2012 21 /33

Relationships between classes

« easy to tell if C yields C’ in 1 step

« configuration graph: nodes are configurations,
edge (C, C) iff C yields C’ in one step

« # configurations for a 2-tape TM (work tape +
read-only input) that runs in space t(n)

nx t(n) x |Q] x [[t
_— e
input-tape head I state
position work-tape
work-tape head contents
position

H. Yen (NTUEE) Theory of Computation Fall 2012 22 /33

Relationships between classes

* ift(n) = c log n, at most
n x (clogn) x cy x c,cle9n< nk
configurations.

* can determine if reach quccept OF Greject from
start configuration by exploring config.
graph of size nk(e.g. by DFS)

» Conclude:Lc P

H. Yen (NTUEE) Theory of Computation Fall 2012 23 /33

Relationships between classes

« if t(n) = n°, at most
k
nXnexcy,xc"<2"
configurations.

* can determine if reach gccept OF Greject frOM
start conflguratlon by exploring config.
graph of size onk (e.g. by DFS)

+ Conclude: PSPACE © EXP

H. Yen (NTUEE) Theory of Computation Fall 2012 24 /33

Relationships between classes

So far:
L c Pc PSPACE C EXP

believe all containments strict
know L C PSPACE, P C EXP

even before any mention of NP, two major
unsolved problems:

?

LZp P Z PSPACE

H. Yen (NTUEE) Theory of Computation Fall 2012 25 /33

A P-complete problem

o We don’t know how to prove L # P

@ But, can identify problems in P least likely to be in L using
P-completeness.

@ need stronger reduction (why?)

e logspace reduction: f computable by DTM that uses O(logn)
space, denoted gl <; Ly

o If Ly is P-complete, then L, in L implies L = P

f
yes yes

no no
L, L,

H. Yen (NTUEE) Theory of Computation Fall 2012 26 / 33

A P-complete problem

Circuit Value (CVAL): given a variable-free Boolean circuit (gates
(V,A,—,0,1), does it output 17?

CVAL is P-complete. I

H. Yen (NTUEE) Theory of Computation Fall 2012 27 /33

CVAL is P-complete (proof)

@ already argued in P

o L arbitrary language in P, TM M decides L in n* steps

« Tableau (configurations written in an array)
for machine M on input w:

wi/qs | W, W, _ » height =
wy | wp/qy .. Wy | _ time taken
wi/q, | a | w, _] = wpe
« width =
| /e _ | .. | _ |+ _ | spaceused
< |wi¢

H. Yen (NTUEE) Theory of Computation Fall 2012 28 /33

CVAL is P-complete (proof)

* Important observation: contents of cell in
tableau determined by 3 others above it:

a/q;

b

b/q,

b/q,

a

H. Yen

(NTUEE)

Theory of Computation

Fall 2012

29 /33

CVAL is P-complete (proof)

« Can build Boolean circuit STEP
— input (binary encoding of) 3 cells
— output (binary encoding of) 1 cell

a |b/q| a « each output bit is some
LLLLEE Lt [function of inputs

STEP « can build circuit for each

[TTTTT * size is independent of
a size of tableau

H. Yen (NTUEE) Theory of Computation Fall 2012 30/ 33

CVAL is P-complete (proof)

Tableau for |w,/q,| w, W, —
M on input wy |wo/qy .. W, _
W

* |w|¢ copies of STEP compute row i from i-1

STEP STEP STEP STEP STEP
L e P e HEREN

H. Yen (NTUEE) Theory of Computation Fall 2012

31/33

CVAL is P-complete (proof)

w w w

1 2 n c . .
LLEEEE PR PR L This circuit Cy,
Wy Q| W, w, |~ | _ ||yhasinputs
[TTETT T PRI TTT T [TTTT] W4Wo... W, and

STEP STEP STEP STEP sTeEP |C(w)=1Iiff M

STEP STEP STEP STEP STEp |3CCEpts input

LEEEEE e e rrrrr reduction

- S
:2 ignoré\?hese Size = O(jw]|2°)

— 1iff cell contains qocceps

STEP STEP STEP STEP STEP logspace
— _/

H. Yen (NTUEE) Theory of Computation Fall 2012 32/33

o First separations (via simulation and diagonalization):
P # EXP, L +# PSPACE

@ First major open questions:
LZ P, PZLPSPACE
@ First complete problems: CVAL is P-complete

/ L E \
e
L

H. Yen (NTUEE) Theory of Computation Fall 2012 33 /33

