$L = \{0^n 1^n : n \ge 0\}$ is not regular.

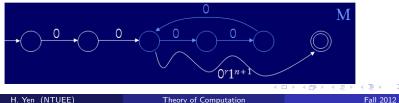
We reason by contradiction:

- Suppose we have managed to construct a DFA *M* for *L*.
- We argue something must be wrong with this DFA.
- In particular, M must accept some strings outside L.

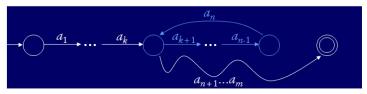
A non-regular language

Imaginary DFA for L with n states. What happens when we run M on input $x = 0^{n+1} 1^{n+1}$?

- *M* better accept, because $x \in L$.
- But since M has n states, it must revisit at least one of its states while reading 0^{n+1} .
- But then the DFA must contain a loop with 0s
- The DFA will then also accept strings that go around the loop multiple times
- But such strings have more 0s than 1s, so they are not in L!
- A contradiction!!!



Every regular language L has a property:



For every sufficiently long input z in L, there is a middle part in z that, even if repeated any number of times, keeps the input inside L

Pumping lemma: For every regular language L

Lemma

There exists a number n such that for every string z in L, we can write $z = u \cdot v \cdot w$ where

 $|uv| \leq n$

2
$$|v| \ge 1$$

So For every $i \ge 0$, the string $uv^i w$ is in L.

Arguing non-regularity

If L is regular, then:

There exists *n* such that for every *z* in *L*, we can write z = u v w where $\bigcirc |uv| \le n$, $\bigcirc |v| \ge 1$ and

(3) For every $i \ge 0$, the string $uv^i w$ is in L.

So to prove L is not regular, it is enough to show:

proof strategy

For every *n* there exists *z* in *L*, such that for every way of writing z = uvw where $|uv| \le n$ and $|v| \ge 1$, the string $uv^i w$ is not in *L* for some $i \ge 0$.

This is a game between you and an imagined adversary (say Donald)

Donald	you		
I choose n	choose z	$\in L$	
2 write $z = i$	$uvw(uv \le n, v \ge 1)$ choose <i>i</i>		
	you win i	$f uv^i w \notin L \qquad \qquad \blacksquare \qquad \blacksquare \qquad \blacksquare$	৩৫৫
H. Yen (NTUEE)	Theory of Computation	Fall 2012	5 / 34

You need to give a strategy that, regardless of what the adversary does, always wins you the game.

	Donald	you	
T	choose n	choose $z \in L$	
2	write $z = uvw(uv)$	$e_{Z} = uvw(uv \le n, v \ge 1)$ choose <i>i</i>	
		you win if $uv^iw \notin L$	

	Donald	you
T	choose n	choose $z \in L$
2	write $z = uvw (uv \le n, v \ge n)$	1)choose i
		you win if $uv^iw \notin L$
L =	$= \{0^n 1^n : n \ge 0\}$	
_	Donald	you
1	Donald choose <i>n</i>	you $Z = 0^{n}1^{n}$
 2		
 2	choose <i>n</i>	$z = 0^n 1^n$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

	Donald	you
T	choose n	choose $z \in L$
2	write $z = uvw (uv \le n, v \ge 1$)choose i
		you win if $uv^iw \notin L$

 $L = \{1^p : p \text{ is prime }\}$

Donald you I choose n 2 write $z = uvw = 1^a 1^b 1^c$ i = a + c $uv^i w = 1^a 1^{ib} 1^c$ $= 1^{(a+c)+ib}$ $= 1^{(a+c)+ib}$ $= 1^{(a+c)+(a+c)b}$ $= 1^{(a+c)(b+1)}$ $= 1^{composite} \notin L_5$

We know $L = \{b^m c^m | m > 0\}$ is not regular. Let us consider $L' = a^+ L \cup (b + c)^*$. L' is not regular. If L' would be regular, then we can prove that L is regular (using the closure properties we will see next). However, the Pumping lemma does apply for L' with n = 1.

This shows the Pumping lemma is not a necessary condition for a language to be regular.

- We can easily prove $L_1 = \{0^n 1^n | n > 0\}$ is not a regular language.
- L_2 = the set of strings with an equal number of 0's and 1's isn't either, but that fact is trickier to prove.
- Regular languages are closed under \cap .
- If L_2 were regular, then $L_2 \cap L(0^*1^*) = L_1$ would be, but it isn't.

Let *L* and *M* be regular. Then L = L(R) = L(D) and M = L(S) = L(F) for regular expressions *R* and *S*, and DFA *D* and *F*. We have seen that RL are closed under the following operations:

- Union : $L \cup M = L(R+S)$ or $L \cup M = L(D \bigoplus F)$
- Complement : $\bar{L} = L(\bar{D})$
- Intersection : $L \cap M = \overline{\overline{L} \cup \overline{M}}$ or $L \cap M = L(D \times F)$
- Difference : $L M = L \cap \overline{M}$
- Concatenation : LM = L(RS)
- Closure : $L^* = L(R^*)$
- Prefix : Prefix(L) = {x | ∃y ∈ Σ*, xy ∈ L} (Hint: in D, make final all states in a path from the start state to final state)
- quotient, morphism, inverse morphism, substitution, ...

Definition

$$L_1, L_2 \subseteq \Sigma^*$$
, $L_1/L_2 = \{x \in \Sigma^* \mid \exists y \in L_2, xy \in L_1\}.$

Note: $Pref(L) = L/\Sigma^*$.

Theorem

 $L, R \subseteq \Sigma^*$. If R is regular, then R/L is also regular.

Proof Idea: $F' = \{q \in Q \mid \exists y \in L, \hat{\delta}(q, y) \in F\}$

Example

$$L = \{a^{n^2} \mid n \ge 0\}$$
. $L/L = \{a^{n^2 - m^2} \mid m, n \ge 0\} = a(aa)^* + (a^4)^*$.

(日) (周) (三) (三)

Morphisms

$$\begin{split} h : \Sigma \to \Delta^* \\ h : \Sigma^* \to \Delta^* & h(xy) = h(x)h(y), h(\epsilon) = \epsilon \\ h : 2^{\Sigma^*} \to 2^{\Delta^*} & h(L) = \bigcup_{x \in L} \{h(x)\} \end{split}$$

Example

$$h(0) = ab, h(1) = ba, h(2) = \epsilon.$$

$$h(00212) = ababba;$$

$$h(\{0^n 21^n | n \ge 0\}) = \{(ab)^n (ba)^n | n \ge 0\}$$

$$h(K \cup L) = h(K) \cup (L);$$

$$h(K \cdot L) = h(K) \cdot h(L);$$

$$h(K^*) = h(K)^*.$$

3

・ロト ・回ト ・ヨト ・

Inverse Morphisms

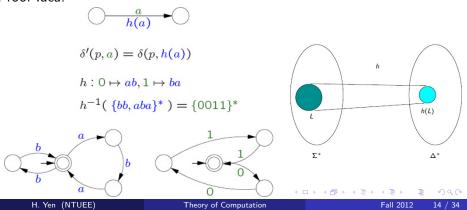
$$h: \Sigma^* \to \Delta^*, K \subseteq \Delta^*$$

 $h^{-1}(K) = \{x \in \Sigma^* \mid h(x) \in K\}$

Theorem

Regular languages are closed under inverse morphism.

Proof Idea:



Definition

$$x \| \epsilon = \epsilon \| x = \{x\}$$

$$ax \| by = a(x \| by) \cup b(ax \| y)$$

$$K \| L = \bigcup_{x \in K, y \in L} x \| y$$

 $abb \| aca = \{ aabbca, aabcba, aabcab, aacabb, aacbab, aacbab, aacbba, abbaca, ababca, abacba, abacba, acabba, acabba, acaabb \}.$

Theorem

If K, L are regular, so is K || L.

Shuffle (cont'd)

Proof.

copies of alphabet

 $\Sigma, \Sigma_1 = \{a_1 \mid a \in \Sigma\}, \Sigma_2 = \{a_2 \mid a \in \Sigma\}$ $h_1: \Sigma_1 \cup \Sigma_2 \to \Sigma^*$ $a_1 \mapsto a \quad a_2 \mapsto \epsilon$ $h_2: \Sigma_1 \cup \Sigma_2 \to \Sigma^* \quad a_1 \mapsto \epsilon \quad a_2 \mapsto a$ $q: \Sigma_1 \cup \Sigma_2 \to \Sigma^* \quad a_1 \mapsto a \quad a_2 \mapsto a$ abbba $\stackrel{h_1}{\leftarrow} a_1 b_1 a_2 c_2 b_1 a_2 c_2 b_1 a_1 \xrightarrow{h_2}$ acac $\in K$ $\in L$ $\downarrow q$ abacbacba

$$K \parallel L = g(h_1^{-1}(K) \cap h_2^{-1}(L))$$

Definition

$$\frac{1}{2}L = \{x \in \Sigma^* | \exists y \in \Sigma^*, xy \in L; |y| = |x|\}.$$

Theorem

If L is regular, so is
$$\frac{1}{2}L$$
.

Proof

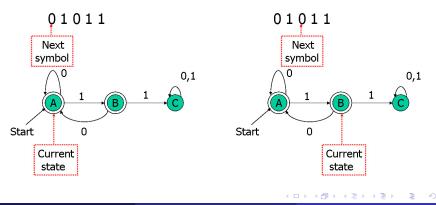
guess middle state, simulate halves in paralle $Q' = \{q'_0\} \cup Q \times Q \times Q$ (Note: middle, 1st, 2nd) $\delta'(q'_0, \epsilon) = \{[q, q_0, q] | q \in Q\} \epsilon$ -move $\delta'([q, p, r], a) = \{[q, \delta(p, a), \delta(r, b)] | b \in \Sigma\}$ $F' = \{[q, q, p] | q \in Q, p \in F\}$

イロト イ理ト イヨト イヨト

- A decision property for a class of languages is an algorithm that takes a formal description of a language (e.g., a DFA) and tells whether or not some property holds.
- Example: Is language L empty?
 - The representation is a DFA (or a RE that you will convert to a DFA).
 - Can you tell if $L(A) = \emptyset$ for DFA A?

- When we talked about protocols represented as DFAs, we noted that important properties of a good protocol were related to the language of the DFA.
- Example: Does the protocol terminate? = Is the language finite?
- Example: Can the protocol fail? = Is the language nonempty?

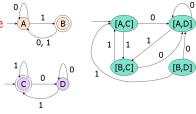
- Our first decision property is the question: is string w in regular language L?
- Assume L is represented by a DFA A.
- Simulate the action of A on the sequence of input symbols forming w



- Given a regular language, does the language contain any string at all.
- Assume representation is DFA.
- Construct the transition graph.
- Compute the set of states reachable from the start state.
- If any final state is reachable, then yes, else no.

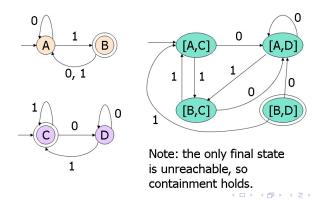
- Is a given regular language infinite?
- Start with a DFA for the language.
- Key idea: if the DFA has n states, and the language contains any string of length *n* or more, then the language is infinite.
- Otherwise, the language is surely finite. Limited to strings of length *n* or less.
- There are an infinite number of strings of length > n, and we cant test them all.
- Second key idea: if there is a string of length > n (= number of states) in *L*, then there is a string of length between *n* and 2n 1.
- Test for membership all strings of length between n and 2n 1. If any are accepted, then infinite, else finite.

- Given regular languages L and M, is L = M?
- Algorithm involves constructing the product DFA from DFA's for *L* and *M*.
- Let these DFA's have sets of states Q and R, respectively.
- Product DFA has set of states $Q \times R$. I.e., pairs [q, r] with q in Q, r in R.
- Make the final states of the product DFA be those states [q, r] such that exactly one of q and r is a final state of its own DFA. Thus, the product accepts w iff w is in exactly one of L and M.
- The product DFA's language is empty iff L = M.



The Containment Problem

- Given regular languages L and M, is $L \subseteq M$?
- Algorithm also uses the product automaton.
- How do you define the final states [q, r] of the product so its language is empty iff L ⊆ M?
 - Answer: q is final; r is not.



The Minimum-State DFA for a Regular Language

- In principle, since we can test for equivalence of DFA's we can, given a DFA A find the DFA with the fewest states accepting L(A).
- Test all smaller DFA's for equivalence with A.
- But that's a terrible algorithm.
- Efficient State Minimization
 - Construct a table with all pairs of states.
 - If you find a string that distinguishes two states (takes exactly one to an accepting state), mark that pair.
 - Algorithm is a recursion on the length of the shortest distinguishing string.

- Basis: Mark a pair if exactly one is a final state.
- Induction: mark [q, r] if there is some input symbol *a* such that $[\delta(q, a), \delta(r, a)]$ is marked.
- After no more marks are possible, the unmarked pairs are equivalent and can be merged into one state.

Note: (Transitivity of Indistinguishable) If state p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.

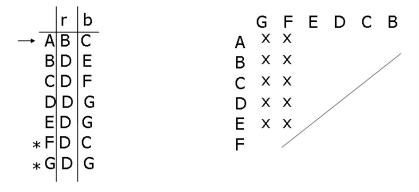
- Suppose $q_1, ..., q_k$ are indistinguishable states.
- Replace them by one state q.
- Then $\delta(q_1, a), ..., \delta(q_k, a)$ are all indistinguishable states.
 - Key point: otherwise, we should have marked at least one more pair.
- Let $\delta(q, a) =$ the representative state for that group.

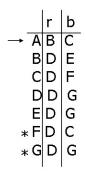
r	b	r b	
	{1,3,7,9 {1,3,5,7, {1,3,5,7, {1,3,5,7, {5}	CD F 9} DD G 9} ED G 9} *FD C	Here it is with more convenient state names

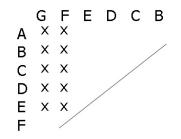
H. Yen (NTUEE)

• • • • • • • • • • • •

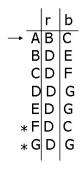
Start with marks for the pairs with one of the final states F or G.

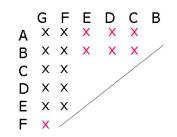




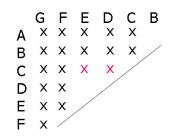


Input r gives no help, because the pair [B, D] is not marked.

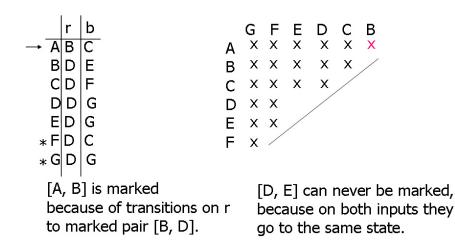




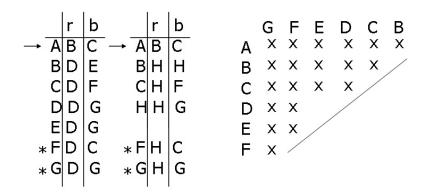
But input b distinguishes {A,B,F} from {C,D,E,G}. For example, [A, C] gets marked because [C, F] is marked.



[C, D] and [C, E] are marked because of transitions on b to marked pair [F, G].



Example: State Minimization



Replace D and E by H. Result is the minimum-state DFA.