A non-regular language

L={0"1": n> 0} is not regular.

We reason by contradiction:
@ Suppose we have managed to construct a DFA M for L.
@ We argue something must be wrong with this DFA.

@ In particular, M must accept some strings outside L.

H. Yen (NTUEE) Theory of Computation Fall 2012 1/34

A non-regular language

Imaginary DFA for L with n states. What happens when we run M on
input x = 0"t11m+1?
@ M better accept, because x € L.

@ But since M has n states, it must revisit at least one of its states
while reading 071

@ But then the DFA must contain a loop with Os

@ The DFA will then also accept strings that go around the loop
multiple times

@ But such strings have more 0Os than 1s, so they are not in L!

@ A contradiction!!!

H. Yen (NTUEE) Theory of Computation Fall 2012 2 /34

General method for showing non-regularity

Every regular language L has a property:

For every sufficiently long input z in L, there is a middle part in z that,
even if repeated any number of times, keeps the input inside L

H. Yen (NTUEE) Theory of Computation Fall 2012 3 /34

Pumping lemma for regular languages

Pumping lemma: For every regular language L

There exists a number n such that for every string z in L, we can write
zZ=u-v-w where

Q |uv|<n

Q|v[>1

@ For every i > 0, the string uv'w is in L.

H. Yen (NTUEE) Theory of Computation Fall 2012

4/ 34

Arguing non-regularity

If L is regular, then:

There exists 7 such that for every z in L, we can

write z = v w where @ |uv| < n,@|v| =1
and

(3) For every i > 0, the string uv/w is in L.

So to prove L is not regular, it is enough to show:

For every n there exists z in L, such that for every way of writing z = uvw
where |uv| < nand |v| > 1, the string uv'w is not in L for some i > 0.

This is a game between you and an imagined adversary (say Donald)

Donald you

| choose n choose z € L
2 writez = uvw (|uv| = n,|v| = 1)choose ¢
you win if uv'w ¢ L

H. Yen (NTUEE) Theory of Computation Fall 2012 5/ 34

Arguing non-regularity

You need to give a strategy that, regardless of what the adversary does,
always wins you the game.

Donald you

| choose n choosez € L
2 writez = uvw (|uv| < n,|v| = 1)choose :
you win if nv'w & L

H. Yen (NTUEE) Theory of Computation Fall 2012 6 /34

Donald you
| choose n choosez € L
2 writez = yvw (|uv| < n|v| = 1)choose ;

you win if uv'w ¢ L
L=1{0"":n>0}

Donald you

| choose n z = Q0"1”

2 writez = uow fi= .2
oooogoooqo%opoo11111_t1w111111111 nvtw = Or+k1m g [

OOOOOOOOQOOOPOOOPOOI 11111111111111
u v v w

H. Yen (NTUEE) Theory of Computation Fall 2012 7 /34

Donald you
| choose n choosez € L
v| = 1)choose i
you win if nv'w & L

2 writez = uovw (Juv| < n,

L={1P:p is prime }

Donald you
| choose n
2 write z = wow = 141°1¢ i=a+c¢
nviny = 141#1¢
- 1(a+c)+ib
111111111111111111111111111111 b
N oo = 1(a+c)+(a+f)
= 1la+qglb+1)

—]composite @ LS

H. Yen (NTUEE) Theory of Computation Fall 2012 8 /34

Pumping Lemma is not a Necessary Condition

We know L = {b™c™|m > 0} is not regular. Let us consider
L'=atLu(b+ c)*. L' is not regular. If L’ would be regular, then we can
prove that L is regular (using the closure properties we will see next).
However, the Pumping lemma does apply for L’ with n = 1.

This shows the Pumping lemma is not a necessary condition for a
language to be regular.

H. Yen (NTUEE) Theory of Computation Fall 2012 9 /34

Use of closure properties to show non-regularity

e We can easily prove L; = {0"1"|n > 0} is not a regular language.

@ L, = the set of strings with an equal number of 0's and 1's isn't
either, but that fact is trickier to prove.

@ Regular languages are closed under N.

o If Ly were regular, then Ly N L(0*1*) = L; would be, but it isn't.

H. Yen (NTUEE) Theory of Computation Fall 2012 10 / 34

Closure properties

Let L and M be regular. Then L = L(R) = L(D) and M = L(S) = L(F)
for regular expressions R and S, and DFA D and F.
We have seen that RL are closed under the following operations:

Union : LUM = L(R+S) or LUM = L(DE F)

Complement : L = L(D)

Intersection : LAM=LUM or LN M = L(D x F)

Difference : L — M =LNM

Concatenation : LM = L(RS)

Closure : L* = L(R*)

Prefix : Prefix(L) = {x | 3y € £*,xy € L} (Hint: in D, make final all
states in a path from the start state to final state)

quotient, morphism, inverse morphism, substitution, ...

H. Yen (NTUEE) Theory of Computation Fall 2012 11 /34

Li,L, C ¥*, L1/L2 = {X ex* | dy € Ly, xy € Ll}.

Note: Pref(L) = L/X*.

L,R CX*. If R is regular, then R/L is also regular.

Proof Idea: F/ ={qe Q| 3y € L,5(q,y) € F}

L={a" |n>0}. L/L={a"""™ | m,n>0} = a(aa)* + (a*)".

H. Yen (NTUEE) Theory of Computation Fall 2012 12 / 34

h: ¥ — A*
h:X*— A* h(xy) = h(x)h(y), h(e) =€
B2 528" h(L) = Uye {h0)

h(0) = ab, h(1) = ba, h(2) = e.
h(00212) = ababba;

h({0721"n > 0}) = {(ab)"(ba)"|n > 0})
(Theorem |
h(KUL) = h(K)U (L),
h(K - L) = h(K) - h(L),
h(K*) = h(K)*.

H. Yen (NTUEE) Theory of Computation Fall 2012 13 / 34

Inverse Morphisms

h: T — A" K C A*
h 1K) = {x € T* | h(x) € K}

Regular languages are closed under inverse morphism. I

Proof ldea:
:/_ a lK-_\'l
Ny h(a) N
8'(p,a) = 5(p, h(a)) / \ / \
h
h:0+ ab, 1+ ba ; —ﬁ — |
\ |
B=L({bb, aba}*) = {0011}* -
L
G’/, '_/ \,I 1 e /\ K/ /
e *r;--'\/ ‘ e ol =) 1} E A
Ny _.:"l\\.:;’l‘I ! b "_/I&\ ﬂ_/" O“
‘\.%_7({ T \} ~
a _J 0 —_/

H. Yen (NTUEE) Theory of Computation Fall 2012 14 / 34

Shuffle

x|le = ellx = {x}
ax||by = a(x||by) U b(ax]|y)
KIL = Usek yer xlly

abbl||aca = {aabbca, aabcba, aabcab, aacabb, aacbab,
aacbba, abbaca, ababca, abacba, abacab, acabba, acabab, acaabb}.

If K, L are regular, so is K||L.

H. Yen (NTUEE) Theory of Computation Fall 2012 15 / 34

Shuffle (cont'd)

Proof.
copies of alphabet

Z,Zl={(£-1|{IEZ},ZQ={(.{-2|GEE}
h.]_ . ZIUEQ—:’ Z* (I-li—:‘(l C&Qi—:‘f
h2:21U22—>Z* aq —r € an — a

g: U, 3 X* aj—3a ar—a

h !
abbba < a1byasecobiascobiay 2 acac
c K lg €L
abacbacha

K || L=g(h{ (K)nhyY (L))

H. Yen (NTUEE) Theory of Computation Fall 2012 16 / 34

IL={xeT By e xyelL; |y|=|x}.

If L is regular, so is %L.

guess middle state, simulate halves in paralle

Q ={g4} UQ x Q x Q (Note: middle, 1st, 2nd)

8'(g6,€) ={[g. 90, 9]|qg € @} e-move

(g, p, r],) = {[a,d(p,a),o(r, b)]|b € X}

F'={l9.9.pllg € Q.p € F} 0

H. Yen (NTUEE) Theory of Computation Fall 2012 17 / 34

Decision Properties

@ A decision property for a class of languages is an algorithm that takes
a formal description of a language (e.g., a DFA) and tells whether or
not some property holds.

@ Example: Is language L empty?

e The representation is a DFA (or a RE that you will convert to a DFA).
o Can you tell if L(A) = 0 for DFA A?

H. Yen (NTUEE) Theory of Computation Fall 2012 18 / 34

Why Decision Properties

@ When we talked about protocols represented as DFAs, we noted that

important properties of a good protocol were related to the language
of the DFA.

@ Example: Does the protocol terminate? = Is the language finite?

@ Example: Can the protocol fail? = Is the language nonempty?

H. Yen (NTUEE) Theory of Computation Fall 2012 19 / 34

The Membership Question

@ Our first decision property is the question: is string w in regular
language L?

@ Assume L is represented by a DFA A.

@ Simulate the action of A on the sequence of input symbols forming w

01011 01011
Next Next
symbol symbol

Stat 0 Start 0

Current Current
state state

H. Yen (NTUEE) Theory of Computation Fall 2012 20 / 34

The Emptiness Problem

Given a regular language, does the language contain any string at all.
Assume representation is DFA.
Construct the transition graph.

Compute the set of states reachable from the start state.

If any final state is reachable, then yes, else no.

H. Yen (NTUEE) Theory of Computation Fall 2012 21/ 34

The Infiniteness Problem

@ Is a given regular language infinite?
o Start with a DFA for the language.

o Key idea: if the DFA has n states, and the language contains any
string of length n or more, then the language is infinite.

o Otherwise, the language is surely finite. Limited to strings of length n
or less.

@ There are an infinite number of strings of length > n, and we cant
test them all.

@ Second key idea: if there is a string of length > n (= number of
states) in L, then there is a string of length between n and 2n — 1.

@ Test for membership all strings of length between n and 2n — 1. If
any are accepted, then infinite, else finite.

H. Yen (NTUEE) Theory of Computation Fall 2012 22 / 34

The Equivalence Problem

@ Given regular languages L and M, is L = M?

@ Algorithm involves constructing the product DFA from DFA's for L
and M.

@ Let these DFA's have sets of states @ and R, respectively.

@ Product DFA has set of states Q x R. l.e., pairs [q, r] with g in Q, r
in R.

@ Make the final states of the product DFA o\
be those states [g, r] such that exactly one
of q and r is a final state of its own DFA. 5,1

Thus, the product accepts w iff w is in

1
exactly one of L and M. S 0 QO

@ The product DFA’s language is empty 1
iff L= M.

H. Yen (NTUEE) Theory of Computation Fall 2012 23 /34

The Containment Problem

@ Given regular languages L and M, is L C M?

@ Algorithm also uses the product automaton.

@ How do you define the final states [g, r] of the product so its
language is empty iff L C M?

- Answer: q is final; r is not.

- Note: the only final state

1 is unreachable, so
containment holds.

H. Yen (NTUEE) Theory of Computation Fall 2012 24 / 34

The Minimum-State DFA for a Regular Language

@ In principle, since we can test for equivalence of DFA’s we can, given
a DFA A find the DFA with the fewest states accepting L(A).

@ Test all smaller DFA’s for equivalence with A.

@ But that’s a terrible algorithm.
— Efficient State Minimization

@ Construct a table with all pairs of states.

e If you find a string that distinguishes two states (takes exactly one to
an accepting state), mark that pair.

@ Algorithm is a recursion on the length of the shortest distinguishing
string.

H. Yen (NTUEE) Theory of Computation Fall 2012 25 / 34

State Minimization

@ Basis: Mark a pair if exactly one is a final state.

@ Induction: mark [g, r] if there is some input symbol a such that
[0(qg,a),d(r,a)] is marked.

@ After no more marks are possible, the unmarked pairs are equivalent
and can be merged into one state.

Note: (Transitivity of Indistinguishable) If state p is indistinguishable from
g, and q is indistinguishable from r, then p is indistinguishable from r.

H. Yen (NTUEE) Theory of Computation Fall 2012 26 / 34

Constructing the Minimum-State DFA

Suppose g1, -.-, gk are indistinguishable states.

Replace them by one state g.

Then (g1, a), ..., (g, a) are all indistinguishable states.
o Key point: otherwise, we should have marked at least one more pair.

Let d(qg, a) = the representative state for that group.

H. Yen (NTUEE) Theory of Computation Fall 2012 27 / 34

Example: State Minimization

r b r|b
— {1} {2,4y | {5} — ABIC
2,4 {2,468} {1,357} ERIE iars i
{5} {2,4,6,8) {1,3,7,9} ggg with more
{2141618} {2141618} {113151719} ED G ConVenient
{1,3,5,7} |{2,4,6,8}/{1,3,5,7,9} state names
* {1,379} {2468} 1{5) g
* {1,3,5,7,9}{2,4,6,8} {1,3,5,7,9} *

H. Yen (NTUEE) Theory of Computation Fall 2012 28 / 34

Example: State Minimization

Start with marks for the pairs with one of the final states F or G.

r|b G FEDTCB
— AB |C A XX

B|D |E B X X

C|D F C X X

DD|G D X X

EID |G E X X

*xF|D |C F

x*GD|G

H. Yen (NTUEE) Theory of Computation Fall 2012 29 / 34

Example: State Minimization

r|b G FEDTCEB
— ABIC A X X

B|D |E B X X

C|D|F C X X

DD|G D X X

EID|G E X X

*F|D |C F

xGD|G

Input r gives no help,
because the pair [B, D]
is not marked.

H. Yen (NTUEE) Theory of Computation Fall 2012 30/ 34

Example: State Minimization

¥ ¥

OTMMUOm>

oUDO0OgoOO0®m—

a0 Mmoo

H. Yen (NTUEE)

MMmgO W >
X X X X X x@
X X X X XTI
X X m

x xU

X X0

(93]

But input b distinguishes {A,B,F}
from {C,D,E,G}. For example, [A, C]
gets marked because [C, F] is marked.

Theory of Computation Fall 2012 31/ 34

Example: State Minimization

r|b G FEDTCHB
—AlBIC A X X X X X
BIDI|E B X X X X X
CID|F C X X X X
DD|G D X X

E|D |G E X x

«F|D |C F x

*GD|G

[C, D] and [C, E] are marked
because of transitions on b to
marked pair [F, G].

H. Yen (NTUEE) Theory of Computation Fall 2012 32 /34

Example: State Minimization

* ¥
OTMMgOOWmIE
OO0 gogm-
OO Mmoo
MmMMmMmQ O W@ >

[A, B] is marked
because of transitions on r
to marked pair [B, D].

X X X X x x@
X X X X X
X X XM

x x xU

X X0

= 0

[D, E] can never be marked,
because on both inputs they
go to the same state.

Theory of Computation Fall 2012 33 /34

Example: State Minimization

rib r|b G FEDTCB
— AIBIC — ABIC A X X X X X X
B|D |E B|H [H B X X X X X
C|D |F ClH |F C X X X X
DD|G HH|G D X X

EID|G E X X

*FID|C xFH|C F x

«xGD|G xGH|G

Replace D and E by H.
Result is the minimum-state DFA.

H. Yen (NTUEE) Theory of Computation Fall 2012

