The Turing Machine

Significance

- D. Hilbert’s question: Is it possible to find an algorithm for determining the truth or falsehood of any mathematical proposition?
- Kurt Gödel (1931) published his famous incompleteness theorem – there exists a formula in the predicate calculus applied to integers that could neither be proved nor disproved within the predicate calculus.
- Alonzo Church (1936) – any way to compute is analogous to TMs (Church-Turing thesis).

A model of “any possible computation”...

Roughly speaking, a Turing Machine is an input-output device: a black box that reads a sequence of 0s and 1s.

The output depends only on the present input (0 or 1) and the previous output.

The nature of the output is unimportant.

The main thing is that the changes from one output state to the next are given by definite rules, called the transition rules.
The Turing Machine

Notation

Each move by a Turing Machine results in
- Change of state;
- writing a tape symbol in the cell just scanned; and
- moving the tape head left or right.

The Turing Machine

A Turing Machine (TM) is formally described by the 7-tuple \(M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \) where
- \(Q \) is the finite set of states of the finite control
- \(\Sigma \) is the finite set of input symbols
- \(\Gamma \) is the finite set of tape symbols, and \(\Sigma \subseteq \Gamma \)
- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\} \) is a transition function
- \(q_0 \in Q \) is the start state
- \(B \in \Gamma \) is the blank symbol; and
- \(F \subseteq Q \) is a set of final states.

The Turing Machine

Instantaneous descriptions (IDs) are denoted by strings \(X_1X_2wX_{i-1}qX_iX_{i+1}wX_n \) where \(q \in Q \), \(\alpha = X_1X_2wX_{i-1}, \beta = X_iX_{i+1}wX_n \in \Gamma^* \) and
- the tape head is scanning the \(i \)th symbol from the left;
- \(X_1X_2wX_n \) is the portion of the tape between the leftmost and the rightmost nonblank.

The Turing Machine

Moves are described by the \(\rightarrow \) notation similar to that used for PDAs (similarly for \(\rightarrow^* \)).
- Suppose \(\delta(q,X_i) = (p,Y,L) \); i.e. the next move is leftward. Then,
 \[
 X_1X_2wX_{i-1}qX_iX_{i+1}wX_n \rightarrow^* X_1X_2wX_{i-2}pX_{i-1}YX_{i+1}wX_n
 \]
 - If \(i = 1 \), then
 \[
 qX_1X_2wX_n \rightarrow^* pBYX_2wX_n
 \]
 - If \(i = n \) and \(Y = B \), then
 \[
 X_1X_2wX_{n-1}qX_n \rightarrow^* X_1X_2wX_{n-2}pX_{n-1}
 \]
The Turing Machine

Suppose $\delta(q_i, X_i) = (p, Y, R)$; i.e. the next move is rightward. Then,

$\text{If } i=n, \text{ then } X_1X_2\ldots X_{i-1}qX_i X_{i+1}w X_n \xrightarrow{\delta} X_1X_2\ldots X_{i-1}Yp X_{i+1}w X_n$

$\text{If } i=1 \text{ and } Y=B, \text{ then } qX_1X_2w X_n \xrightarrow{\delta} pX_2w X_n$
The Turing Machine

- Turing Machines and Halting
 - Another notion of “acceptance” commonly used for TMs is *acceptance by halting*. A TM *halts* if it enters a state $q \in Q$, scanning a tape symbol $X \in \Gamma$, and $\delta(q, X)$ is undefined.
 - We assume that a TM always halts when it is in an accepting state. *(How can we do this?)*
 - (Model of “algorithm”) Languages with TMs that halt eventually, whether or not they accept, are called *recursive languages*.

TM Programming Techniques

- **Example**
 - Consider TM $M = (Q, \{0, 1\}, \{0, 1, B\}, \delta, [q_0, B], B, \{[q_1, B]\})$ where $L(M) = 01^* + 10^*$

Multiple Tracks

- each track can hold one symbol and the tape alphabet consists of tuples.
- with multiple tracks, one track can be used as a “mark” holder.
 - M_1 where $L(M_1) = \{0^n1^n : n \geq 1\}$ *(see Slide #22)*
 - *monus* TM *(see Slide #23)*
 - M_2 where $L(M_2) = \{wcw : w \in \{0, 1\}^*\}$

Storage in the State

- treat state as a tuple to “store” data values.
TM Programming Techniques

Subroutines

Since TMs are used to represent algorithms, TMs can be built by connecting interacting components (other TMs) or subroutines.

Example: TM M that implements the “multiplication” function by reading input $0^m 1^n$ and computing 0^{mn}.

can be implemented by using a “copy” function that makes m copies of 0^n ...

The “copy” TM as a subroutine:

The complete “multiplication” TM that uses the “copy” subroutine:

A Hierarchical Notation for TMs

- complex machines built from simpler ones.
- consists of basic machines and rules for combining machines.

Basic Machines

- Head-moving machines
 - M_Σ, abbreviated L, is the machine
 $$M_\Sigma = (\{ s, h \}, \Sigma, \Sigma \cdot \Sigma \cdot B, \delta, s, B, \{ h \})$$
 - where $\delta(s,a) = (h,a,L)$
 - Similarly for machine M_μ, abbreviated R.
Chapter 8: Introduction to Turing Machines

TM Programming Techniques

- **Basic Machines, continued ...**
 - **Symbol-writing machines**
 - For each $a \in \Sigma$, define M_a, abbreviated a, is the machine
 $M_a = (\{s, h\}, \Sigma, \Sigma \setminus \{B\}, \delta, s, B, \{h\})$
 where $\delta(s, b) = (h, a, R)$ for all $b \in \Sigma$

- **Rules for Combining Machines**
 - TMs will be combined in a way suggestive of the structure of a finite automaton.
 - Individual machines treated as states and connected by input tape symbols.

Conventions (Notational Conveniences)

- Unlabelled arrows assume any symbol $a \in \Sigma$.
- Arrows labelled a denotes any $b \in \Sigma$ where $b \neq a$.
- For a machine M, M^n for $n > 0$ denotes n copies of M connected by unlabelled arrows.

Note:

- This notation works nicely with subroutines!

TM Extensions

- **Multitape Turing Machines**
 - From Figure 8.16 of *IATLC*, Hopcroft, Motwani, & Ullman, 2001.
 - Finite control
 - Input tape
 - Tape movements $= \{L, R, S\}$

- **Equivalence of One-Tape and Multitape TMs**
 - From Figure 8.17 of *IATLC*, Hopcroft, Motwani, & Ullman, 2001.
 - Finite control
 - $A_1, A_2, X, A_j, B_j, B_{j+1}$
TM Extensions

Theorem 8.9

- Every language accepted by a multitape TM is recursively enumerable.

Proof: (Many-Tapes-to-One Construction)

- Let language L be accepted by a k-tape TM M.
- Simulate TM M with one-tape TM N whose tape has $2k$ tracks.
 - Only half of the tracks hold contents of tapes of M.
 - The other half contain single marker for current head position at the corresponding tape of M.

Proof: (Many-Tapes-to-One Construction), continued ...

- Next, N has to
 - revisit each head marker on its tape;
 - change the symbol in the track representing the corresponding tapes of M; and
 - move the head markers left or right, if necessary.
- Finally, N changes the state of M as recorded in its own finite control (based on tuples for Q_N).

TM Extensions

Theorem 8.10

- The time taken by the one-tape TM N of Theorem 8.9 to simulate n moves of the k-tape TM M is $O(n^2)$.

Important implication:

- If the multitape TM takes polynomial time, so does the one-tape TM.
Chapter 8: Introduction to Turing Machines

TM Extensions

- A **nondeterministic Turing Machine (NTM)** differs from the deterministic variety by

\[\delta(q,X) \subseteq Q \times \Gamma \times \{ L,R \} \]

where \(q \in Q \) and \(X \in \Gamma \)

- NTMs can choose, at each step, any of the triples to be the next move.

- Similar definitions for IDs, moves, and language accepted by an NTM \(M \) apply as derived from the deterministic variety ...

Theorem 8.11

If \(M_N \) is a nondeterministic TM, then there is a deterministic TM \(M_D \) such that \(L(M_N) = L(M_D) \).

Proof:

- **Idea:** NTM \(\rightarrow \) \(k \)-tape DTM \(\rightarrow \) 1-tape DTM.

- Construct \(M_D \) as a \(k \)-tape DTM.
 - Use first (multitrack) tape to hold a *queue* of IDs of \(M_N \), including the state of \(M_N \), separated by inter-ID markers such as "\(*\)."
 - Second tape is merely used as a marker.

To process current ID, \(M_D \) does the following:

- \(M_D \) examines state \(q \in Q \) and scanned symbol \(X \in \Gamma \) of current ID. The finite control of \(M_D \) knows what choices of moves \(M_N \) has for each state and symbol. If \(q \in F \), then \(M_D \) accepts and simulates \(M_N \) no further.

- If \(q \not\in F \) and \(M_N \) has \(k \) moves, then \(M_D \) uses its second tape to copy the current ID and then make \(k \) copies of that ID at the end of the sequence of IDs on tape 1 (thereby adding them to the back of the queue).
Chapter 8: Introduction to Turing Machines

TM Extensions

M_D processing the current ID, continued ...

- M_D modifies each of the k IDs just copied onto tape 1 to a different one of the k choices of moves that M_N has from its current ID.
- M_D returns to the marked, current ID to erase the mark and to move the mark to the next ID to the right. The cycle repeats on this next ID ...

Note: This is similar to the use of a queue for the breadth-first search algorithm.

Restricted TMs

Theorem 8.12

- Every language accepted by a TM M_2 is also accepted by a TM M_1 with the following restrictions:
 - M_1’s head never moves left of its initial position; and
 - M_1 never writes a blank.

Restricted TMs

- Semi-infinite Tapes
 - A TM with a semi-infinite tape means that there are no cells to the left of the initial head position.
 - A TM with a semi-infinite tape simulates a TM with an infinite tape by using a two-track tape:

```
| x_0 | x_1 | x_2 | ...
|-----|-----|-----|-----
| ⬤   |     |     |     
```

- Multistack Machines
 - Generalizations of the PDAs
 - Recall: TMs can accept languages that are not accepted by any PDA with one stack.
 - Note: PDA with two stacks can accept any language that a TM can accept!
 - In one move, a multistack machine can:
 - change to a new state $q \in Q$; and
 - replace the top symbol of each stack with a string of zero or more stack symbols $X \in \Gamma^*$.
Restricted TMs

Example: A 3-stack machine ...

From Figure 8.20 of IATLC, Hopcroft, Motwani, & Ullman, 2001.

Chapter 8: Introduction to Turing Machines

Chapter 8

Developed by B. Juliano © 2002, based on notes by J. Ullman

Restricted TMs

Theorem 8.13

If a language \(L \) is accepted by a TM \(M \), then \(L \) is accepted by a two-stack machine.

Proof:

- Idea: Use one stack to hold what is to the left of the tape, and use the other to hold what is to the right of the tape.
- Details in the textbook ...

Restricted TMs

Counter Machines

Two equivalent ways to think of a counter machine:

- A stack with a bottom marker, say \(Z_0 \), and one other symbol, say \(X \), that can be placed on the stack.
- Thus, the stack always looks like \(XXXwXZ_0 \), or specifically, \(X^nZ_0 \).
- A device that holds a non-negative integer with operations increment-by-1, decrement-by-1, and test-if-zero.

The Power of Counter Machines

Note:

- Every language accepted by a counter machine is recursively enumerable.
- Counter machines are special cases of stack machines, which are special cases of multitape TMs, which accept only recursively enumerable languages.
- Every language accepted by a one-counter machine is a CFL.
- A one-counter machine is a special case of a one-stack machine; i.e., a PDA.
Chapter 8: Introduction to Turing Machines

Restricted TMs

Theorem 8.14

Every recursively enumerable language is accepted by a three-counter machine.

Proof:

Idea: Use Theorem 8.13 to derive a two-stack machine, then develop a constructive algorithm for a 2-stacks-to-3-counters conversion.

2-stacks-to-3-counters conversion:

Consider \(L = \{ a^n b^n c^n : n \geq 0 \} \), TM \(M_1 \) where \(L(M_1) = L \), and \(w \in \{ a, b, c \}^* \) where \(|w| = n \).

So, by Theorem 8.13 we can derive an equivalent 2-stack machine, \(M_2 \).

2-stacks-to-3-counters conversion, continued:

If a stack has \(r-1 \) symbols, think of the stack contents as a base-\(r \) number with the symbols as the digits 1 through \(r-1 \).

So, for the 3-counter machine, \(M_3 \), use one counter for each stack plus one "scratch" counter:

\(M_3 \)

C_1 for \(M_2 \)'s stack, \(S_L \)

C_2 for \(M_2 \)'s stack, \(S_R \)

C_3
Restricted TMs

2-stacks-to-3-counters conversion, continued:

Consider the string \(w = aaabbbccc \) and the ID \(aaqabbbccc \) for \(M_1 \) where \(q \in Q \) ...

\[
\begin{array}{c|ccc}
 & a & b & c \\
 S_L & 40 & 41 & x \\
 a & 40 & 41 & 46 \\
 x & \\
 S_R & \\
\end{array}
\]

There are \(r-1 = |\{a,b,c\}| = 3 \) stack symbols. So, \(r=4 \).

Let \(a=1, b=2, c=3 \) represent the three (non-zero) base-4 quad units.

\[
\begin{array}{c|ccc}
 & a & b & c \\
 S_L & 40 & 41 & x \\
 a & 40 & 41 & 46 \\
 x & \\
 S_R & \\
\end{array}
\]

\[
\begin{array}{c|ccc}
 & a & b & c \\
 S_L & 40 & 41 & x \\
 a & 40 & 41 & 46 \\
 x & \\
 S_R & \\
\end{array}
\]

Note: To move \(M_1 \)'s read-write head one cell to the right requires popping \(X_i \) from \(S_R \) and pushing \(X_i \) into \(S_L \) for \(M_2 \).

Restricted TMs

2-stacks-to-3-counters conversion, continued:

which is represented by \(M_3 \) as

\[
\begin{array}{c}
 \begin{array}{c}
 40 \\
 41 \\
 \end{array}
\end{array}
\begin{array}{c}
 \begin{array}{c}
 5 \\
 16297 \\
 \end{array}
\end{array}
\begin{array}{c}
 \begin{array}{c}
 C_1 \\
 C_2 \\
 C_3 \\
 \end{array}
\end{array}
\begin{array}{c}
 \begin{array}{c}
 S_L \text{ for } M_2 \text{'s stack}, \\
 S_R \text{ for } M_2 \text{'s stack}, \\
 0 \text{ for } M_3 \text{'s stack}.
 \end{array}
\end{array}
\]

Read top symbol of \(S_R = \) store the remainder, \(C_2 \) modulo \(r \) into \(C_3 \).

States in \(M_3 \) used to determine remainder.
Restricted TMs

2-stacks-to-3-counters conversion, continued:

- Pop from $S_R = \text{divide } C_2 \text{ by } r$, discarding the remainder.

$$M_2$$

- Push into $S_L = \text{multiply } C_1 \text{ by } r$, then add the value stored in C_3.

$$M_3$$

Theorem 8.15

- Every recursively enumerable language is accepted by a two-counter machine.

Proof:

- Idea: Develop a constructive algorithm for a 3-counters-to-2-counters conversion. Do this by representing the 3 counters i, j, and k, by a single integer $m=2^i3^j5^k$.

• $i=0$ if and only if the number $m=2^i3^j5^k$ is not divisible by 2.
• $j=0$ and $k=0$ analogous.
Restricted TMs

3-counters-to-2-counters conversion, continued:

" Incrementing counters i, j, or k is equivalent to multiplications of the count $m=2^i3^j5^k$ by 2, 3, or 5; respectively.

" Decrementing counters i, j, or k is equivalent to divisions of the count $m=2^i3^j5^k$ by 2, 3, or 5; respectively.

TMs and Computers

Real Computers

" In one sense, a (real) computer has a finite number of states, and is thus weaker than a TM ...

\[\begin{itemize}
 \item We have to postulate an infinite supply of tapes, disks, or some peripheral storage device to simulate an infinite tape TM.
 \item Assume a human operator can mount disks, keeping them stacked neatly on the sides of the computer.
\end{itemize} \]

Simulating a TM by a Computer

A computer can simulate finite control, and mount one disk that holds the region of the tape around the tape head.

When the tape head moves off this region, the computer outputs the following request:

\[\begin{itemize}
 \item Move the current disk to the top of the left or right pile; and
 \item Mount the disk at the top of the other pile.
\end{itemize} \]

See the figure on the next slide ...

From Figure 8.21 of U.G. Hopcroft, R. Motwani, J. Ullman, 2001.

Page 17 May 17, 2002 © B. Juliano, Computer Science @ CSU, Chico
TMs and Computers

Simulating a Computer by a TM

Idea: Simulation is at the level of stored instructions and words in memory ...

TM has one tape that holds all the used memory locations and their contents.

Other TM tapes hold the instruction counter, memory address, computer input file, and "scratch."

TMs and Computers

Comparing the Running Times of Computers and TMs

Use TM as a tool not just to examine what can be computed, but also what can be computed with enough efficiency that a problem’s computer-based solution can be used in practice.

Tractable (polynomial; what can be solved efficiently) vs. intractable (more than polynomial; can be solved, but not fast enough for the solution to be usable)
Comparing the Running Times of Computers and TMs, continued ...

If a problem can be solved in polynomial time on a typical computer, then it can be solved in polynomial time by a TM, and conversely.

Hence, conclusions about what a TM can or cannot do with adequate efficiency apply equally well to a computer.

Comparing the Running Times of Computers and TMs, continued ...

If a computer can do multiplication of words whose length is not limited (e.g. to 64 bits, as on most computers), then the length of the longest value can double at each step.

Assume that a computer is about to perform n multiplications requiring $T(n)$ steps ...

It would take at least $O(2^{T(n)})$ steps for a TM to simulate $T(n)$ steps of the computer.

However, if we limit the length of words to, say, 64 bits, or we allow arbitrarily long words but only instructions that add at most 1 to the length in one step (e.g. addition) ...

Assume that a computer is about to perform n additions requiring $T(n)$ steps ...

Then $O(T(n)^3)$ steps of the TM suffice to simulate $T(n)$ computer steps.

Theorem 8.17

If a computer

has only instructions that increase the maximum word length by at most 1; and

has only instructions that a multitape TM can perform on words of length k in $O(k^2)$ steps or less;

Then the TM described in Slide #64 can simulate n steps of the computer in $O(n^3)$ of its own steps.
Theorem 8.18

A computer of the type described in Theorem 8.17 can be simulated for n steps by a one-tape TM, using at most $O(n^6)$ steps of the TM.

Proof:

Recall: A one-tape TM can simulate a multitape TM by squaring the number of steps, at most.