Data Structures
Fall 2020, Programming Assignment #1

1 Introduction

PageRank is an algorithm used by Google Search to rank websites in their search engine results. PageRank
was named after Larry Page, one of the founders of Google. PageRank is a way of measuring the importance
of website pages. According to Google:

PageRank works by counting the number and quality of links to a page to determine a rough estimate of
how important the website is. The underlying assumption is that more important websites are likely to
receive more links from other websites.

It is not the only algorithm used by Google to order search engine results, but it is the first algorithm that
was used by the company, and it is the best-known.

-
daa.edu

o —

. l'\l |
\ / \/
TTE.9ov | page \[mmm.net |
~ / — |
aaa.edu l“/ /
| | fff.arg 7
| mmm . net 1 L | /
| . Vi
N ___/
Pages and links

Figure 1: A simple web graph.

Quoting from the original Google paper, PageRank is defined like this:

We assume page A has pages T, ..., T, which point to it (i.e., are citations). The parameter d is a
damping factor which can be set between 0 and 1. We usually set d to 0.85. Also C(X) is defined as
the number of links going out of page X. The PageRank of a page A is given as follows:

PR(A) = (1 —d)/N +d = (PR(T1)/C(T1) + ... + PR(T,)/C(T,)), where N is the total number of
pages,

Note that the PageRanks form a probability distribution over web pages, so the sum of all web pages’
PageRanks will be one.

See Figure 2 for an example.

2 Assignment

Your project is to build a simple search engine. Here is what you must do:

You will be given a zip file which contains 500 files named page0 through page499. Each page contains a
list of other pages which it points to (there may be anywhere from zero to three hundred of these, pages
may refer back to themselves). Following this there will be a row of hyphens (always the same amount)
and then a list of 20 words which the page contains (all pages will contain 20 words).

1/4 9/60 41/300 543/4500 15/148
[1/4 1 { 13/60 1 [53/300 1 [707/4500 w [10/148 1
1/4 |1 25/60 |1 153/300 | * | 254374500 | | 05/148
| 174 | | 13760 | | 537300 | | “ro7y4s00 | 10/145 |

Figure 2: An example with d = 0.8.

From these you need to create a program that produces two output files - a page rank file named PageRank
and a reverse index file named Reverselndex. Your program will then enter a loop which takes as inputs
a list of one or more words and then returns the top ten hits (list of pages) for those words. If only one
word is used, then the program should print the top ten pages for that word. If multiple words are used,
then the program should print two sets of output - the top ten pages that contain all the words (AND
semantics), and the top ten pages that contain any of those words (OR semantics).

Your program should loop until the input is *end* (including the asterisks).

Your program will take two command line arguments - the page rank stopping difference and the ”d” value,
in that order, details below.

Please note that there is one special page — it is page500. This is a page that is pointed to in the crawl,
but for which there is no page file. Consider this page as if it was an image or other such document. Thus,
it does participate in the computation, but it does not itself link out to anything. To handle this page you
need to

- save pageb00 in your structure

- calculate its pagerank (like all other pages)

- include it in the pagerank list

(note that this means there are 501 pages in the system — i.e. that N=501.)
Some Other Details

Note: the search should be case sensitive, and punctuation counts (i.e. ”don’t” is not the same as ”dont”)
— in essence, use string equality.

When you produce the output, please use ASCII order (i.e. uppercase letters before lower case).

Here is the pseudo-code of the PageRank algorithm:

PageRank(page(0..n — 1), d, DIFF);
1 INITIALIZE:

PR(i) = 1/N for all 4;
9 diff = 0;

For each P in Page

PRbefore= PR(P);
PR(P) =(1—4d)/N +dx((PR(t1)/CR(t;) + PR(t2)/CR(t2)...)
for all ¢; that point to P
(CR(t;) is the outbranching of ¢;)
dif f =dif f + AbsoluteV alue(PRbe fore — PR(P);
3 ifdiff >= DIFF then goto 2
4 done.

1) Page Rank list

Your program will take two arguments, the stopping difference and the ”d” value, and compute the page
rank for all 500 pages, stopping when the cumulative diff for all 500 goes below that number (a real
number greater than zero) - note, be careful when debugging - for some settings of these two parameters
your program could loop forever (we’ll provide some useful values for debugging).

Your output should be a file with a list of the pages in page rank order (highest to lowest), for each page
listing its outbranching (how many pages it connects to) and the page rank for that page (to 8 significant
digits).

Example

page500 137 .0023781
page503 196 0022139
pagel500 7 .0021101

2) Reverse index

Your program should also produce a file which shows its reverse index. That is, for every word (note:
including commonly used ones) you should output the word followed by a list of the pages that include
that word (please alphabetize the word list, the pages can be produced in any order you choose - but each
page should only appear once!).

Example

a pageb00 paged22 page9l6 page803

an page999 page921 page998 page763 pagel227 paged01 page937 page862 pageb00
pageb22 page916 page803 page919 page997

at page900 page2000 pagel227 paged01 page9d37 page862

zuchini pagel000

3) Search engine

Given the data structures containing the above, your search engine is quite simple. You take as input a list
of words and you output the top ten pages (sorted by page rank) that contain them (if less than 10, then
print all of them). When a single word is entered, just output the pages for that word. When multiple
words are entered, output two lists - the top ten pages with all the words and the top ten pages with any
of the words (multiple words do not effect the ranking here).

Example
Enter Word: moose
pagel000 page2001 page2000

Enter Word: moose cow

AND (moose cow) pagel000

OR (moose cow) pagel000 page2006 page2001 pagel983 page776 page842 page777 page2000 paged63
page871

Enter Word: *end*

NOTE To compute the PageRank for a large graph representing the Web, we have to perform a ma-
trixVvector multiplication many times, until the vector is close to unchanged at one iteration. Since the
transition matrix of the Web M is very sparse, representing it by all its elements is highly inefficient.
Rather, we want to represent the matrix by its nonzero elements.

An example of a page file:

page351 page3b2 pagell9 page3b4 pagedd9 pageddb pagelll paged40 pagell7 pagelld pagellb page219
pagel91 pagel96 pagel97 pagel95 page2l3 page2l5 page2l4 page290 page292 pagebb page297 page299
page298 page207 pagedd7 paged72 paged75 page362 pagel63 pagel60 pageld7? paged8 page288 page286
page287 page284 pagebl page273 paged78 page275 paged73 page279 page278 pagel78 pagelT77 pagel72
paged8 paged7 paged6 pagedd page312 page260 pagedb4 page265 page266 page268 page269 pageld9 pageld§
pagel40 paged91 paged97 pageld4d page301 paged94 page3d83 page3d8l paged66 page69 pagell8 paged60
page36 page3b page3d3 page3dl page90 pageldd page94d page9dd page9d7 page9d8 page257 page256 pageld8
paged89 page319 page306 paged80 page3l6 paged84 pageld3d paged86 pagedI7 paged78 paged3l page399
paged11 page28 pagedld page25 page27 page227 paged16 pagel23 page87 page86 page241 page83 page3d28
page321 page320 page323 page327 page401 paged02 paged04 paged09 pageld pagel7 page336 pagel32
page3d3b pagel37 pageld8 page9 page205 page239 page238 paged paged pagel page230 paged64 paged3§
paged36 paged33 pagel05 pagedb6 pagel07 pagel06 pagelOl paged52 pagel85 pagel86 pagel80 page224
page209 pagel89 page221 page73 page7l paged22 paged27

———— her clearing instrument of singular every lenses and He the him at which false successfully
to the and In Street

