
Data Structures
Fall 2020, Homework # 4

Date: Jan. 4, 2021

1. (20 pts) Suppose that we start from an empty Fibonacci heap.

(a) We perform a sequence of operations that includes only insertions of elements and find-and-
remove-min operations, but does not include any decrease-priority operations. Is it possible for
the resulting Fibonacci heap to include a tree with exactly five nodes in it? Explain why (by
finding a sequence of operations of this type that produces a five-node tree) or why not.

(b) For the question in (a) above, what is your answer (and why) if decrease-priority operations are
allowed?

2. (20 pts) Suppose that we are using a union-find structure for a family of disjoint sets of elements
that have a total ordering (that is, we can compare any two elements and determine which one is
smaller, in constant time). We wish to modify the find(x) operation so that, instead of returning
an arbitrary member of the set containing x, it always returns the smallest member. Describe a way
of performing this modification with the same time per operation (in terms of its O-notation) as the
original union-find data structure.

(a) Explain why it does not work to change which node gets linked to which in a union in order to
make the minimum element be the root of the tree for its set.

(b) Propose a method that works. (Hint: you may add extra information to the tree nodes, but do
not change the connectivity of the tree.)

3. (20 pts)

(a) For any positive integer n, give a sequence of Fibonacci-heap operations that creates a Fibonacci
heap consisting of just one tree that is a linear chain of n nodes.

(b) For any positive integer n, give a sequence of skew-heap operations that creates a skew heap
consisting of just one tree that is a linear chain of n nodes.

4. (30 pts) Consider an undirected graph (given its adjacency list) with n vertices and m edges.

(a) Give an algorithm that counts the connected components using a union-find data structure.

(b) How much time does the above algorithm take? Why?

(c) Can you count the connected components in O(n + m) time using perhaps a different data
structure/algorithm? Show how and analyze your algorithm.

5. (10 pts) Draw the decision tree for bubble-sort for an array A[0..2] of n = 3 elements. Recall that in
the first pass, the largest element is going to be moved to the very right of the array.

1


