Data Structures

Fall 2020, Final Exam. (Solutions) Jan. 11, 2021

- 1. (10 pts) True or False? Write O for true and × for false. Score = max $\{0, Right \frac{1}{2} Wrong\}$.
 - (1). $\dots \times \dots$ Inserting *n* keys into an initially empty binomial heap takes $\Theta(n \log n)$ time. Sol: O(n) time.
 - (2). ...O... Given a top-down red-black tree with n elements, it is possible to sort the n elements using the tree in O(n) time. Sol: Use inorder traversal.
 - (3). ...O... Consider a bottom-up red-black tree, it is true that in the worst case, an insertion requires O(1) rotations. Sol: 2 rotations suffice.
 - (4). ... × ... Quicksort is a stable sorting algorithm whose worst case running time is $O(n^2)$. Sol: Not stable.
 - (5). ...O... Given an undirected graph G = (V, E), it can be tested to determine whether or not G is a tree in O(|V| + |E|) time. A tree is a connected graph without any cycles. Sol: Using either DFS or BFS
 - (6). ...O... The Bellman-Ford algorithm can be used to detect the existence of a negative-weight directed cycle, if there is one, in a directed weighted graph.

Sol: G has a negative cycle if the algorithm fails to stabilize after |V| iterations.

- (7). ...O... There are 3 binomial trees in a binomial heap with 13 elements. Sol: 13=1101 in binary representation
- (8). ... × ... In Union-Find, if only union-by-rank is applied (i.e., no path compression), then the worst-case time of a find operation becomes $\Theta(n)$ Sol: $O(\log n)$
- (9). $\dots \times \dots$ The height of an *n*-node leftist tree is $O(\log n)$. Sol: Could be *n*.
- (10). ... × ... Applying quicksort (using the leftmost key as the pivot) to a reverse sorted (such as 9, 8, 7, ..., 2, 1) array of n elements takes $O(n \log n)$ time. Sol: $O(n^2)$

1	2	3	4	5	6	7	8	9	10
X	0	Ο	Х	Ο	Ο	Ο	Х	Х	Х

- 2. (6 pts) If a data structure supports an operation *foo* such that a sequence of *n* foo's takes $O(n \log n)$ time in the worst case, then the amortized time of a *foo* operation is $\Theta(T_1(n))$ while the actual time of a single *foo* operation could be as low as $\Theta(T_2(n))$ and as high as $\Theta(T_3(n))$. What are $T_1(n), T_2(n), T_3(n)$? No explanations needed. **Sol:** $T_1(n) = \log n, T_2(n) = 1, T_3(n) = n \log n$
- 3. (14 pts) Consider Prim's algorithm for finding the minimum spanning tree of a weighted graph G = (V, E) with n nodes and m edges (i.e., $|V| = n, |E| = m, m \ge n-1$). It is known that the priority queue ADT plays a key role in Prim's algorithm.
 - (a) (2 pts) What is the number of *delete-min* operations involved in Prim's algorithm?
 Sol: |V| = n
 - (b) (2 pts) What is the number of *decrease-key* operations involved in Prim's algorithm? Sol: |E| = m
 - (c) For each of the following priority queue implementations, write down the running time of Prim's algorithm. Your solution should be a function in terms of variables m and n (such as O(n² + m log n + mn), O(mn²) ...). No explanations needed.
 (1) Binary heap (2) Binomial heap (3) Fibonacci heap (4) Leftist heap (5) Skew heap Sol:
 - i. Binary heap: $O(m \log n)$
 - ii. Binormial heap: $O(m \log n)$
 - iii. Fibonacci heap: $O(m + n \log n)$
 - iv. Leftist heap: $O(m \log n)$
 - v. Skew heap: $O(m \log n)$
- 4. (10 pts) Many balanced binary tree data structures (such as AVL trees, 2-3-4 trees, etc) maintain a collection of elements, subject to *insertion* and *deletion* operations that both take worst-case time proportional to the logarithm of n (i.e., $\log_2 n$).

- (a) Find a potential function ϕ for which (without changing the data structure, only its analysis) the amortized time per *deletion* is O(1), while the amortized time per *insertion* is still only $O(\log n)$.
- (b) Show how this choice of ϕ gives these amortized time bounds for insertion and deletion.

Recall that the amortized time of an operation O is $\hat{c}_O = c_O + (\phi(D') - \phi(D))$, where applying O to data structure D yields D' and c_O is the actual time of O.

Sol:

- (a) Define $\phi(T) = n \log n$, where n is the number of nodes in the tree.
- (b) Deletion: $c_{del} = \log n + (\phi(T') \phi(T)) = \log n + ((n-1)\log(n-1) n\log n) \le \log n + ((n-1)\log(n-n\log n)) = O(1).$
- (c) Insertion: $c_{in} = \log n + (\phi(T') \phi(T)) = \log n + ((n+1)\log(n+1) n\log n) \le \log n + ((n+1)\log(n+1) n\log n) = O(\log n).$
- 5. (8 pts) Consider the use of the double hashing probing technique for collision resolution, and let the primary and secondary hash functions be

$$h_1(x) = x \mod m$$
 $h_2(x) = 1 + (x \mod (m-1)).$

Insert the keys 28, 59, 47, 13, 39, 69, 12, 6 into the hash table of size m = 11. Show the content of the table.

Sol:	0	1	2	3	4	5	6	7	8	9	10	
		69	13	47	59	39	28	12		6		j

6. (12 pts) Consider the following AA-tree. Suppose that you apply an *insertion* and a *deletion* below into the AA-tree. For each operation, give the number of *skews*, the number of *splits*, and the key that appears in the root node when the operation is completed. Recall that a *split* is to remove two consecutive right horizontal links, while a *skew* removes a left horizontal link. The operations are NOT cumulative - you are applying each operation into the AA-tree below.

7. (10 pts) For the following example, suppose we run Dijkstra's algorithm starting from node A. Answer the following questions:

(i) (6 pts) Give the order of nodes in which Dijkstra's Algorithm would visit. Fill in the following blanks 1 7 with letters

(ii) (2 pts) What is the best data structure (i.e., most efficient) data structure for implementing Dijkstra's algorithm?
 Sol: Fibonacci Heap

- (iii) (2 pts) What is the total weight of the shortest path from A to G?Sol: 8
- (10 pts) The leftmost column (I) contains an array of 24 integers to be sorted; the rightmost column (O) contains the integers in sorted order. Each of the remaining columns (A)-(E) gives the contents of the array during some intermediate step of one of the algorithms listed below: (1) Merge; (2) Quick; (3) Heap; (4) Bubble; (5) Selection; (6) Insertion; (7) Straight Radix; (8)Radix Exchange; (9) Shell. Match each column (A)-(E) with its corresponding algorithm. No penalty for wrong answers.

Selection sort	Quick sort	Merge sort		Insertion sort		Heapso	ort		
А	В	C		D		E			
		Ι	А	В	С	D	Е	0	
		81	81	81	92	81	98	98	
		58	80	58	86	58	92	92	
		61	61	61	83	61	86	86	
		60	98	60	81	60	83	83	
		63	63	63	64	63	81	81	
		83	83	83	63	83	80	80	
		57	79	57	61	57	79	79	
		86	86	86	60	90 86	78	78	
		30	18	79 64	57	92	64 66	64	
		22	66	50	30	80	63	63	
		92	92	92	22	79	61	61	
		98	60	98	98	78	18	60	
		56	58	56	80	66	28	58	
		28	57	39	79	64	22	57	
		80	56	80	78	56	11	56	
		18	50	66	66	50	50	50	
		78	39	78	56	39	39	39	
		66	37	37	50	37	37	37	
		39	30	28	39	30	30	30	
		50	28	22	37	28	57	28	
		11	22	11	28	22	56	22	
		79	18	30	18	18	58	18	
		37	11	18	11	11	60	11	

- (A) selection sort after 12 iterations
- (B) quicksort after first partitioning step
- (C) mergesort just before the last call to merge()
- (D) insertion sort after 16 iterations
- (E) heapsort after heap construction phase and putting 12 keys into place
- 9. (10 pts)

Sol:

(1) (5 pts) What is the size of the largest min-binary-heap (i.e., min-binary-heap with the largest number of nodes) in which the 5th largest element is a child of the root? Assume the heap has no duplicate elements. Given (draw) an example of the binary heap assuming all keys are integers.
 Sol: 13

- (2) (5 pts) What is the size of the largest max-binary-heap that is also a valid binary search tree? Draw an example assuming all keys are integers. Assume the heap has no duplicate elements.
 Sol: 2; in a max-heap, each node is than each of its children for the heap-order property. Because of this, we are able to have one element in the left subtree, and this does not violate the completeness property as before.
- 10. (10 pts) Insert 4 into the following *bottom-up* red-black tree. Show your derivations in detail. Be sure to mark red nodes clearly. **Sol:**

