


Average vs. Expected Time

@ We have seen many data structures with good average case
performance on random inputs, but bad behavior on particular
inputs. E.g. Binary Search Trees.

@ Instead of randomizing the input (since we cannot!), consider
randomizing the data structure

» No bad inputs, just unlucky random numbers
» Expected case good behavior on any input

@ Deterministic with good average time

» If your application happens to always (or often) use the “bad” case,
you are in big trouble!

@ Randomized with good expected time

» Once in a while you will have an expensive operation, but no
inputs can make this happen all the time

(Treaps Data Structures Fall 2020 2/9
P!



@ Treap - A binary tree that behaves “as if” keys were inserted in
random order

o Invented by R. Seidel and C. Aragon in 1989.
"Treap = Tree + Heap ”

@ Nodes in a treap contain both a key, and a priority (timestamp)

@ A treap has the BST ordering property with respect to its keys,
and the heap ordering property with respect to its priorities

Insertion order: X, e, b, o, f, h, w, m, ¢, a, s

%) Binary search tree

(1) With timest amps
e

7 < Timestamp
W) a Key

(Treaps Data Structures Fall 2020 3/9
P!



o If the priority values as well as the key values are unique, the
treap containing the (key,priority) pairs is unique.
@ For example, what is the treap containing these pairs:
(G,50),(C,35),(E,33),(H,29),(1,25),(B,24),(A,21),(L,16),(J,13),(K,9),(D,8)?
@ In this example, larger the number, higher the priority

A2l D8 L.16
3,13
K9

(Treaps Data Structures Fall 2020 4/9
P!



Treap Insertion

@ Apply the standard insertion process - create node where we fall
out of tree

@ Assign a random priority value to the new node

o Apply rotations up the tree until it is in proper heap order

insert(“t”)
priority = 14

(Treaps) Data Structures Fall 2020 5/9



Treap Deletion

@ Find the node to be deleted
@ Set its priority value to co
@ Rotate it down to the leaf level and unlink

(Treaps) Data Structures Fall 2020 6/9



Treap Performance

@ Implements Dictionary ADT

» insert in expected O(logn) time
» delete in expected O(log n) time
» find in expected O(logn) time

» but worst case O(n)

@ Memory use O(1) per node about the cost of AVL trees
@ Very simple to implement little overhead — less than AVL trees

(Treaps Data Structures Fall 2020 7/9
P!



o For key set = {1,2, ..., n}, priority assignment can be thought of as
a permutation of {1,2,...,n}

o Letm< ={1,2,....m}and m> = {m,m+1,...,n}

@ Let A be the set of ancestors of m, including m itself. Let random
variable X = length of the path from the root down to m =
im< NA| + |m> N A[ - 2.

e Eg,n=10,m=8,0=(4,5,9,2,1,7,3,10,8,6).

@ W.rt. m<, scanning from left to right and checking only k that are
> to the left of k, we have (4, 5,7, 8). Likewise, W.r.t. m>, we have
9,8).

(Treaps) Data Structures Fall 2020 8/9



e H,,, the number of checks obtained when scanning a random
permutation o of {1,2,...m} from left to right and checking every
element that is greater than anything to its left.

o Claim:

o™
5

1
NE
=] =

T
(X

@ Observation:

» Key 1is checked iff it occurs first in o, which has prob = 1

» Let 0’ is o without 1. The number of “checks” on keys other than 1
in ¢ and ¢’ are identical.

» Eg.0=(4,5,9,2,1,7,3,10,8,6) and 0’ = (4,5,9,2,7,3,10,8,6)

|

1
EHm :EHm— —
(Hn) = E(Hy-1) + -

e Hence, E(H,;;) = O(logm)

(Treaps Data Structures Fall 2020 9/9
P!



	Treaps

