
Treaps

(Treaps) Data Structures Fall 2020 1 / 9

Average vs. Expected Time

We have seen many data structures with good average case
performance on random inputs, but bad behavior on particular
inputs. E.g. Binary Search Trees.
Instead of randomizing the input (since we cannot!), consider
randomizing the data structure

I No bad inputs, just unlucky random numbers
I Expected case good behavior on any input

Deterministic with good average time
I If your application happens to always (or often) use the ”bad” case,

you are in big trouble!
Randomized with good expected time

I Once in a while you will have an expensive operation, but no
inputs can make this happen all the time

(Treaps) Data Structures Fall 2020 2 / 9

Treaps

Treap - A binary tree that behaves ”as if” keys were inserted in
random order
Invented by R. Seidel and C. Aragon in 1989.
”Treap = Tree + Heap ”
Nodes in a treap contain both a key, and a priority (timestamp)
A treap has the BST ordering property with respect to its keys,
and the heap ordering property with respect to its priorities

(Treaps) Data Structures Fall 2020 3 / 9

Treaps

If the priority values as well as the key values are unique, the
treap containing the (key,priority) pairs is unique.
For example, what is the treap containing these pairs:
(G,50),(C,35),(E,33),(H,29),(I,25),(B,24),(A,21),(L,16),(J,13),(K,9),(D,8)?
In this example, larger the number, higher the priority

(Treaps) Data Structures Fall 2020 4 / 9

Treap Insertion

Apply the standard insertion process - create node where we fall
out of tree
Assign a random priority value to the new node
Apply rotations up the tree until it is in proper heap order

(Treaps) Data Structures Fall 2020 5 / 9

Treap Deletion

Find the node to be deleted
Set its priority value to∞
Rotate it down to the leaf level and unlink

(Treaps) Data Structures Fall 2020 6 / 9

Treap Performance

Implements Dictionary ADT
I insert in expected O(log n) time
I delete in expected O(log n) time
I find in expected O(log n) time
I but worst case O(n)

Memory use O(1) per node about the cost of AVL trees
Very simple to implement little overhead – less than AVL trees

(Treaps) Data Structures Fall 2020 7 / 9

Analysis

For key set = {1, 2, ...,n}, priority assignment can be thought of as
a permutation of {1, 2, ...,n}
Let m≤ = {1, 2, ...,m} and m≥ = {m,m + 1, ...,n}
Let A be the set of ancestors of m, including m itself. Let random
variable X = length of the path from the root down to m =
|m≤ ∩ A|+ |m≥ ∩ A| − 2.
E.g., n = 10, m = 8, σ = (4, 5, 9, 2, 1, 7, 3, 10, 8, 6).

W.r.t. m≤, scanning from left to right and checking only k that are
> to the left of k, we have (4, 5, 7, 8). Likewise, W.r.t. m≥, we have
(9, 8).

(Treaps) Data Structures Fall 2020 8 / 9

Analysis

Hm, the number of checks obtained when scanning a random
permutation σ of {1, 2, ...m} from left to right and checking every
element that is greater than anything to its left.
Claim:

E(Hm) =

m∑
k=1

1
k

Observation:
I Key 1 is checked iff it occurs first in σ, which has prob = 1

m
I Let σ′ is σ without 1. The number of ”checks” on keys other than 1

in σ and σ′ are identical.
I E.g. σ = (4, 5, 9, 2, 1, 7, 3, 10, 8, 6) and σ′ = (4, 5, 9, 2, 7, 3, 10, 8, 6)
I

E(Hm) = E(Hm−1) +
1
m

Hence, E(Hm) = O(log m)

(Treaps) Data Structures Fall 2020 9 / 9

	Treaps

