Treaps
We have seen many data structures with good average case performance on random inputs, but bad behavior on particular inputs. E.g. Binary Search Trees.

Instead of randomizing the input (since we cannot!), consider randomizing the data structure:
- No bad inputs, just unlucky random numbers
- Expected case good behavior on any input

Deterministic with good average time:
- If your application happens to always (or often) use the “bad” case, you are in big trouble!

Randomized with good expected time:
- Once in a while you will have an expensive operation, but no inputs can make this happen all the time.
Treaps

- **Treap** - A binary tree that behaves "as if" keys were inserted in random order
- Invented by R. Seidel and C. Aragon in 1989. "Treap = Tree + Heap"
- Nodes in a treap contain both a key, and a priority (timestamp)
- A treap has the BST ordering property with respect to its keys, and the heap ordering property with respect to its priorities
If the priority values as well as the key values are unique, the treap containing the (key,priority) pairs is unique.

For example, what is the treap containing these pairs: (G,50),(C,35),(E,33),(H,29),(I,25),(B,24),(A,21),(L,16),(J,13),(K,9),(D,8)?

In this example, larger the number, higher the priority
Treap Insertion

- Apply the standard insertion process - create node where we fall out of tree
- Assign a random priority value to the new node
- Apply rotations up the tree until it is in proper heap order
Treap Deletion

- Find the node to be deleted
- Set its priority value to ∞
- Rotate it down to the leaf level and unlink
Treap Performance

- Implements Dictionary ADT
 - insert in expected $O(\log n)$ time
 - delete in expected $O(\log n)$ time
 - find in expected $O(\log n)$ time
 - but worst case $O(n)$

- Memory use $O(1)$ per node about the cost of AVL trees
- Very simple to implement little overhead – less than AVL trees
For key set = \{1, 2, ..., n\}, priority assignment can be thought of as a permutation of \{1, 2, ..., n\}

Let \(m_\leq = \{1, 2, ..., m\} \) and \(m_\geq = \{m, m + 1, ..., n\} \)

Let \(A \) be the set of ancestors of \(m \), including \(m \) itself. Let random variable \(X = \) length of the path from the root down to \(m = |m_\leq \cap A| + |m_\geq \cap A| - 2 \).

E.g., \(n = 10, m = 8, \sigma = (4, 5, 9, 2, 1, 7, 3, 10, 8, 6) \).

W.r.t. \(m_\leq \), scanning from left to right and checking only \(k \) that are > to the left of \(k \), we have \((4, 5, 7, 8)\). Likewise, W.r.t. \(m_\geq \), we have \((9, 8)\).
\(H_m \), the number of checks obtained when scanning a random permutation \(\sigma \) of \(\{1, 2, \ldots, m\} \) from left to right and checking every element that is greater than anything to its left.

\begin{itemize}
 \item Claim:
 \[E(H_m) = \sum_{k=1}^{m} \frac{1}{k} \]
 \item Observation:
 \begin{itemize}
 \item Key 1 is checked iff it occurs first in \(\sigma \), which has prob = \(\frac{1}{m} \)
 \item Let \(\sigma' \) is \(\sigma \) without 1. The number of ”checks” on keys other than 1 in \(\sigma \) and \(\sigma' \) are identical.
 \item E.g. \(\sigma = (4, 5, 9, 2, 1, 7, 3, 10, 8, 6) \) and \(\sigma' = (4, 5, 9, 2, 7, 3, 10, 8, 6) \)
 \end{itemize}
 \[E(H_m) = E(H_{m-1}) + \frac{1}{m} \]
 \item Hence, \(E(H_m) = O(\log m) \)
\end{itemize}