
Skip Lists

(Skip Lists) Data Structures Fall 2020 1 / 18



Linked Lists Benefits & Drawbacks

Benefits:
I Easy to insert & delete in O(1) time
I Don’t need to estimate total memory needed

Drawbacks:
I Hard to search in less than O(n) time (binary search doesn’t work,

eg.)
I Hard to jump to the middle

Skip Lists:
I fix these drawbacks
I good data structure for a dictionary ADT

(Skip Lists) Data Structures Fall 2020 2 / 18



Skip Lists

Invented around 1990 by Bill Pugh
Generalization of sorted linked lists V so simple to implement
Expected search time is O(log n)
Randomized data structure: use random coin flips to build the
data structure

Perfect skip list

(Skip Lists) Data Structures Fall 2020 3 / 18



Perfect Skip Lists

Keys in sorted order.
O(log n) levels.
Each higher level contains 1/2 the elements of the level below it.
Header & sentinel nodes are in every level
Nodes are of variable size: - contain between 1 and O(log n)
pointers
Pointers point to the start of each node (picture draws pointers
horizontally for visual clarity)
Called skip lists because higher level lists let you skip over many
items

(Skip Lists) Data Structures Fall 2020 4 / 18



Skip Lists

Find 71

When search for k:
If k = key, done!
If k < next key, go down a level
If k ≥ next key, go right

(Skip Lists) Data Structures Fall 2020 5 / 18



In other words,

To find an item, we scan along the shortest list until we would
”pass” the desired item.
At that point, we drop down to a slightly more complete list at
one level lower.
Remember: sorted sequential searching...

(Skip Lists) Data Structures Fall 2020 6 / 18



Skip Lists

Find 96

When search for k:
If k = key, done!
If k < next key, go down a level
If k ≥ next key, go right

(Skip Lists) Data Structures Fall 2020 7 / 18



Search Time

O(log n) levels — because you cut the # of items in half at each
level
Will visit at most 2 nodes per level: If you visit more, then you
could have done it on one level higher up.
Therefore, search time is O(log n).

(Skip Lists) Data Structures Fall 2020 8 / 18



Insert & Delete

Insert & delete might need to rearrange the entire list
Like Perfect Binary Search Trees, Perfect Skip Lists are too
structured to support efficient updates.
Idea:

I Relax the requirement that each level have exactly half the items of
the previous level

I Instead: design structure so that we expect 1/2 the items to be
carried up to the next level

I Skip Lists are a randomized data structure: the same sequence of
inserts/deletes may produce different structures depending on the
outcome of random coin flips.

(Skip Lists) Data Structures Fall 2020 9 / 18



Randomization

Allows for some imbalance (like the +1 -1 in AVL trees)
Expected behavior (over the random choices) remains the same as
with perfect skip lists.
Idea: Each node is promoted to the next higher level with
probability 1/2

I Expect 1/2 the nodes at level 1
I Expect 1/4 the nodes at level 2
I ...

Therefore, expect # of nodes at each level is the same as with
perfect skip lists.
Also: expect the promoted nodes will be well distributed across
the list

(Skip Lists) Data Structures Fall 2020 10 / 18



Insertion

Insert 87

(Skip Lists) Data Structures Fall 2020 11 / 18



Deletion

Delete 87

(Skip Lists) Data Structures Fall 2020 12 / 18



There are no ”bad” sequences

We expect a randomized skip list to perform about as well as a
perfect skip list.
With some very small probability,

I the skip list will just be a linked list, or
I the skip list will have every node at every level
I These degenerate skip lists are very unlikely!

Level structure of a skip list is independent of the keys you insert.
Therefore, there are no ”bad” key sequences that will lead to
degenerate skip lists

(Skip Lists) Data Structures Fall 2020 13 / 18



Skip List Analysis

Expected number of levels = O(log n)
I E[# nodes at level 1] = n/2
I E[# nodes at level 2] = n/4
I ...
I E[# nodes at level log n] = 1

Still need to prove that # of steps at each level is small.

(Skip Lists) Data Structures Fall 2020 14 / 18



Backwards Analysis

Consider the reverse of the path you took to find k:

Note that you always move up if you can. (because you always enter a
node from its topmost level when doing a find)

(Skip Lists) Data Structures Fall 2020 15 / 18



Analysis, continued...

What’s the probability that you can move up at a give step of the
reverse walk?

0.5

Steps to go up j levels =
Make one step, then make either

I C(j − 1) steps if this step went up [Prob = 0.5]
I C(j) steps if this step went left [Prob = 0.5]

Expected # of steps to walk up j levels is:

C(j) = 1 + 0.5C(j − 1) + 0.5C(j)

(Skip Lists) Data Structures Fall 2020 16 / 18



Analysis, continued...

Expected # of steps to walk up j levels is:

C(j) = 1 + 0.5C(j − 1) + 0.5C(j)

So:
2C(j) = 2 + C(j − 1) + C(j)

C(j) = 2 + C(j − 1)

Expected # of steps at each level = 2
Expanding C(j) above gives us: C(j) = 2j
Since O(log n) levels, we have O(log n) steps, expected

(Skip Lists) Data Structures Fall 2020 17 / 18



Summary

Skip lists are a randomized data structure
Provide ”expected” O(log(n)) insert, remove, and search
Compared to the complexity of the code for structures like an
RB-Tree they are fairly easy to implement
In practice they perform quite well even compared to more
complicated structures like balanced BSTs

(Skip Lists) Data Structures Fall 2020 18 / 18


	Skip Lists

