Skip Lists

(Skip Lists) Data Structures Fall 2020 1/18

Linked Lists Benefits & Drawbacks

@ Benefits:
» Easy to insert & delete in O(1) time
» Don’t need to estimate total memory needed
@ Drawbacks:
» Hard to search in less than O(n) time (binary search doesn’t work,
eg.
> Hgai‘d to jump to the middle
@ Skip Lists:

» fix these drawbacks
» good data structure for a dictionary ADT

(Skip Lists) Data Structures Fall 2020 2/18

Skip Lists

@ Invented around 1990 by Bill Pugh
@ Generalization of sorted linked lists V so simple to implement
e Expected search time is O(logn)

@ Randomized data structure: use random coin flips to build the
data structure

Perfect skip list
. 3 [o
ol 2 3|
o] 2 [o 15 fo - 31 o + 96 |of>
e 2 [ob> 10 -|—»|5 bl 16 [ob] 31 [ebs| 71 [obs] 96 [o1>

sentinel
header

(Skip Lists) Data Structures Fall 2020 3/18

Perfect Skip Lists

Keys in sorted order.
O(logn) levels.
Each higher level contains 1/2 the elements of the level below it.

Header & sentinel nodes are in every level

Nodes are of variable size: - contain between 1 and O(logn)
pointers

@ Pointers point to the start of each node (picture draws pointers
horizontally for visual clarity)

o Called skip lists because higher level lists let you skip over many
items

(Skip Lists) Data Structures Fall 2020 4/18

Skip Lists

Find 71
71 1 } 71 = Inf ——
@ e . B—
- < 40 > g I
31 gL N I
- 2 le > 9| |
I5H *- 76 — i
- 10 t-bl o> | 6|e *.+1| o> or» 87 c-rI o> 94 .+|_,_
When search for k:

o If k = key, done!
o If k < next key, go down a level
o If k > next key, go right

(Skip Lists) Data Structures Fall 2020 5/18

In other words,

@ To find an item, we scan along the shortest list until we would
"pass” the desired item.

@ At that point, we drop down to a slightly more complete list at
one level lower.

@ Remember: sorted sequential searching...

for(i = 0; 1 < n; i++)
if(X[i] >= K) break;
if(X[i] != K) return FAIL;

(Skip Lists) Data Structures Fall 2020 6/18

Skip Lists

Find 96
96 < 317 I 96 < Inf? —
.T ® - — >
= 06 < 91] It . -
"= 37._||..lllllllllllllllllllllll* E :;__‘__ Ing?
ol 2 . > 7 e > > Y o——
A5 = 76 = C: Ror=o - H
o> (0| [a>] 6]t [o0]| 7] o] lr>87 & ﬁ-.?%ﬁ‘
L L .
When search for k:

o If k = key, done!
o If k < next key, go down a level
o If k > next key, go right

(Skip Lists) Data Structures Fall 2020 7 /18

@ O(logn) levels — because you cut the # of items in half at each
level

o Will visit at most 2 nodes per level: If you visit more, then you
could have done it on one level higher up.

@ Therefore, search time is O(log n).

(Skip Lists) Data Structures Fall 2020 8/18

Insert & Delete

@ Insert & delete might need to rearrange the entire list

o Like Perfect Binary Search Trees, Perfect Skip Lists are too
structured to support efficient updates.
o Idea:

» Relax the requirement that each level have exactly half the items of
the previous level

» Instead: design structure so that we expect 1/2 the items to be
carried up to the next level

» Skip Lists are a randomized data structure: the same sequence of
inserts/deletes may produce different structures depending on the
outcome of random coin flips.

(Skip Lists) Data Structures Fall 2020 9/18

Randomization

o Allows for some imbalance (like the +1 -1 in AVL trees)
@ Expected behavior (over the random choices) remains the same as
with perfect skip lists.

@ Idea: Each node is promoted to the next higher level with
probability 1/2
» Expect 1/2 the nodes at level 1
» Expect 1/4 the nodes at level 2
> ..
@ Therefore, expect # of nodes at each level is the same as with
perfect skip lists.

@ Also: expect the promoted nodes will be well distributed across
the list

(Skip Lists) Data Structures Fall 2020 10 /18

Insertion

Insert 87
. > V.l > 87/e > I
- |6; !| » 87 o> ot 9 | ,I 1
2 B t B 89 N CH
| (o] [0|d> 5|a>| [ot>{3] +4‘|ﬂ86 87|e> P N-T4NN
0 Ll
v
Find k
Insert node in level 0 Just insertion into
let 1 =1 a linked list after
while FLIP() == “heads”: last visited node in
insert node into level 1 level i
it+

(Skip Lists) Data Structures Fall 2020 11 /18

Delete 87

>3 |

89

(Skip Lists)

Data Structures

Fall 2020 12 /18

There are no “bad” sequences

@ We expect a randomized skip list to perform about as well as a
perfect skip list.
e With some very small probability,

» the skip list will just be a linked list, or
» the skip list will have every node at every level
» These degenerate skip lists are very unlikely!

@ Level structure of a skip list is independent of the keys you insert.

@ Therefore, there are no “bad” key sequences that will lead to
degenerate skip lists

(Skip Lists) Data Structures Fall 2020 13 /18

Skip List Analysis

@ Expected number of levels = O(log 1)

» E[#nodes atlevel 1]=n/2
» E[#nodes atlevel 2] =n/4

|

» E[#nodes at level logn] =1
o Still need to prove that # of steps at each level is small.

(Skip Lists) Data Structures Fall 2020 14 /18

Backwards Analysis

Consider the reverse of the path you took to find k:

Note that you always move up if you can. (because you always enter a
node from its topmost level when doing a find)

(Skip Lists) Data Structures Fall 2020 15/ 18

Analysis, continued...

e What's the probability that you can move up at a give step of the
reverse walk?
0.5

@ Stepstogoupjlevels =
Make one step, then make either

» C(j — 1) steps if this step went up [Prob = 0.5]
» C(j) steps if this step went left [Prob = 0.5]

@ Expected # of steps to walk up j levels is:

C(j)) =1+ 0.5C(j — 1) + 0.5C())

(Skip Lists) Data Structures Fall 2020 16 / 18

Analysis, continued...

o Expected # of steps to walk up j levels is:
C(j) =1+0.5C(j — 1) + 0.5C(j)
So:
2C(j) =2+C(j — 1)+ C())
CGH)=2+C({i—-1)

Expected # of steps at each level = 2
e Expanding C(j) above gives us: C(j) = 2j
e Since O(logn) levels, we have O(log n) steps, expected

(Skip Lists) Data Structures Fall 2020 17 /18

o Skip lists are a randomized data structure
@ Provide "expected” O(log(n)) insert, remove, and search

@ Compared to the complexity of the code for structures like an
RB-Tree they are fairly easy to implement

@ In practice they perform quite well even compared to more
complicated structures like balanced BSTs

(Skip Lists) Data Structures Fall 2020 18 /18

	Skip Lists

