Range Searching

	-				
	L'an	$\alpha \alpha$	00010	himm	N.
	Natr	26	Seand	IIIIIY.	
•	_	_			

Database queries

A database query may ask for all employees with age between a_1 and a_2 , and salary between s_1 and s_2 .

(Ran	ge sea	archi	ng)
------	--------	-------	-----

- **1D range query problem**: Preprocess a set of n points on the real line such that the ones inside a 1D query range (interval) can be reported fast
- The points *p*₁, ..., *p*_n are known beforehand, the query [*x*, *x'*] only later
- A solution to a query problem is a data structure description, a query algorithm, and a construction algorithm
- **Question**: What are the most important factors for the efficiency of a solution?

A balanced binary search tree with the points in the leaves

Balanced binary search trees

The search paths for 25 and for 90

Example 1D range query

A 1-dimensional range query with [25, 90].

- < ⊒ >

Example 1D range query

A 1-dimensional range query with [61, 90].

-

▶ ◀ ☱ ▶ ◀

Another Example

≣ ► ≣ २९९ Fall 2020 8 / 18

イロト イポト イヨト イヨト

- Since search paths have $O(\log n)$ nodes, there are $O(\log n)$ canonical subsets, which are found in $O(\log n)$ time.
- To list the sets, traverse those subtrees in linear time, for additional *O*(*k*) time.

Storage requirement and preprocessing

- A (balanced) binary search tree storing n points uses O(n) storage
- A balanced binary search tree storing n points can be built in O(n) time after sorting, so in $O(n \log n)$ time overall (or by repeated insertion in $O(n \log n)$ time)

Theorem 1

A set of *n* points on the real line can be preprocessed in $O(n \log n)$ time into a data structure of O(n) size so that any 1D range query can be answered in $O(\log n + k)$ time, where *k* is the number of answers reported

Range queries in 2D

- Kd-trees: Time: $O(\sqrt{n} + k)$; Space: O(n)
- range trees: Time: $O(\log^2 n + k)$; Space: $O(n \log n)$

(

2D Range Tree

(Range searching)

- The generic query is $R = [x_{lo}, x_{hi}] \times [y_{lo}, y_{hi}]$.
- We first ignore the *y*-coordinates, and build a 1D *x*-range tree.
- Key idea is to collect points of each canonical set, and build a *y*-range tree on them.
- We search each of the $O(\log n)$ canonical sets that include points for *x*-range $[x_{lo}, x_{hi}]$ using their *y*-range trees for range $[y_{lo}, y_{hi}]$.

Range queries in 2D

	х	у
p1	1	2.5
p2	2	1
p3	3	0
p4	4	4
p5	4.5	3
p6	5.5	3.5
p7	6.5	2

(Ran	<u>ao eo</u>	arch	ing)
(IXall	ge oe	arci	mig)

(ৗ) ► ৗ < つ <
Fall 2020 14 / 18

イロト イポト イヨト イヨト

Every internal node stores a whole tree in an associated structure, on y-coordinate

Question: How much storage does this take?

(Range	searc	hing)	
(······	

• Time complexity for 2D is $O((\log n)^2 + k)$.

At most 2 × height of T = 2 log n

Each 1D query requires O(log n+k') time.

 \Rightarrow

Query time = O(log² n + k)

- Space complexity is *O*(*nlogn*).
 - At each level of the main tree associated structures store all the data points once (with constant overhead): O(n).
 - 2 There are O(log n) levels.
 - So, overall space is $O(n \log n)$.

Theorem 2

A set of *n* points in the plane can be preprocessed in $O(n \log n)$ time into a data structure of $O(n \log n)$ size so that any 2D range query can be answered in $O(\log^2 n + k)$ time, where *k* is the number of answers reported.

In contrast, a *kd*-tree has O(n) size and answers queries in $O(\sqrt{n} + k)$ time.

- A binary tree. Each node has two values: split dimension, and split value.
- If split along *x*, at coordinate *s*, then left child has points with *x*-coordinate ≤ *s*; right child has remaining points. Same for *y*.
- To get balanced trees, use the median coordinate for splitting-median itself can be put in either half.