Disjoint Sets

(Disjoint Sets) Data Structures Fall 2020 1/35

Making a Good Maze

What's a Good Maze?
@ Connected ”[2&! i
@ Just one path between lq‘!f.‘{;-.‘%‘ T
any two rooms gﬂ@ﬂﬂl”:.'b’
@ Random |

The Maze Construction Problem

o Given:

» collection of rooms: V

» connections between rooms (initially all closed): E
@ Construct a maze:

» collection of rooms: V' =V
» designated roomsin,i € V,and out,0 € V
» collection of connections to knock down: E’ C E such that one

unique path connects every two rooms

(Disjoint Sets) Data Structures Fall 2020 2/35

Maze Construction Algorithm

While edges remain in E
@ Remove a random edge e = (1, v) from E
How can we do this efficiently?

@ If u and v have not yet been connected

» addeto E
» mark u and v as connected

How to check connectedness efficiently?

(Disjoint Sets) Data Structures Fall 2020 3/35

Equivalence Relations

@ An equivalence relation R(C A x A) must have three properties
» reflexive: Vx € A, (x,x) € R
» symmetric: (x,y) € R= (y,x) € R
» transitive: (x,y) € RA (y,z) € R= (x,z) € R

@ Connection between rooms is an equivalence relation

» any room is connected to itself

» if room a is connected to room b, then room b is connected to room a

» if room a is connected to room b and room b is connected to room c,
then room a is connected to room ¢

(Disjoint Sets) Data Structures Fall 2020 4/35

Disjoint Set Union/Find ADT

Union/Find operations et

@ create finded) |
@ destroy o

@ union

o find wnion(3.6) <

@ Disjoint set partition property: element of a DS U/F structure
belongs to exactly one set with a unique name

@ Dynamic equivalence property: Union(a,b) creates a new set which is
the union of the sets containing 2 and b

(Disjoint Sets) Data Structures Fall 2020 5/ 35

Construct the maze on
the right

2
Initial (the name of each @‘ !

set is in boldface):

{aj{b}{c}{d}{e}{f}{g}{h}{i}

Randomly select edge 1

Order of edges in blue

(Disjoint Sets) Data Structures Fall 2020 6/ 35

Example, First Step

{ap{b}{c}{d}{e}{f}{g}{h}{i}
find(b) = b

®
2
find(e) = e @. 4—

find(b) # find(e) so:
add1toE 11

9
union(b, e) O EOREO)

Order of edges in blue

{aHb,e}{ci{d}{f}{g}{h}{i}

(Disjoint Sets) Data Structures

Up-Tree Intuition

e Finding the representative member of a set is somewhat like the
opposite of finding whether a given key exists in a set.

@ So, instead of using trees with pointers from each node to its
children; let’s use trees with a pointer from each node to its parent.

@ Each subset is an up-tree

with its root as its (=) @ @

representative member

@ All members of a given (@)

set are nodes in that set’s

up-tree

@ Hash table maps input
data to the node
associated with that data

Up-trees are not necessarily binary!

(Disjoint Sets) Data Structures Fall 2020 8/35

find(f)
fmc_l(c) @4_»@ @
é g ; g D
(@ é O 1 D—0
. Just traverse to the root!
runtune:

(Disjoint Sets) Data Structures Fall 2020 9/35

Union

union(a.c) -
g © O 5 60
@ - O—O
. Just hang one root from the other!
runtime:

(Disjoint Sets) Data Structures Fall 2020 10/ 35

The Whole Example
@ 10 G

@ 0@
4©~®

union(b.e)

éééééé&éé
éiéé ofcXo¥e

Data Structures Fall 2020 11 /35

The Whole Example

@ @ 10 ’@
2 I 6
@ 4+ 7O
11 9 8
union(a,d) 12 '@

5866666
666 666

Data Structures Fall 2020 12 /35

!
o

The Whole Example

union(a,b)

b 46606
- 80086

Data Structures Fall 2020 13 /35

The Whole Example

find(d) = find(e)

& 60666

©

While we're finding e,
could we do anything else?

(Disjoint Sets) Data Structures Fall 2020 14 / 35

The Whole Example

77
O &0

union(h,1) @ 12 ’@‘ 5 ’@

486633 36659
% 5

(Disjoint Sets) Data Structures Fall 2020 15/ 35

The Whole Example

union(c,f)

é‘ éééé 0@ i

(Disjoint Sets) Data Structures Fall 2020 16 / 35

The Whole Example

find(e) !
find(f) 8
union(a,c) <—>®

éééééi adlio
o éé

Could we do a

better job on this union?

(Disjoint Sets) Data Structures Fall 2020 17 / 35

The Whole Example

find(f) *
find(i) §
union(c,h) 12 @

208 [e
@o oo g
5 o

(Disjoint Sets) Data Structures Fall 2020 18 / 35

The Whole Example

|
©
o

find(¢) = find(h) and find(b) = find(c)

So. no unions for cither of these.

(Disjoint Sets) Data Structures Fall 2020 19 /35

@
|
@
éjb

O—O—

12

The Whole Example

find(d)
find(g)

union(c, g)

Yo
é\g T o0 ®
é cééb 0

Data Structures Fall 2020 20/ 35

The Whole Example

I
Q) - —©
|

O—© @? ©
—0—0® O—0—0O

tind(g) = find(h)
So. no union.
And, we’re done!

O—O—0

|

|

g/o ©—

QO O e
Ooh... scary!
Such a hard maze!

(Disjoint Sets) Data Structures Fall 2020 21 /35

O—0—0

Nifty storage trick

o A forest of up-trees can
easily be stored in an &@ @@

array.

@ Also, if the node names
are integers or

Characters, we can use a 0(a) 1(b) 2(c) 3(d) 4(e) 5(0) 6(2) 7(h) 8()
Vel‘y Simple, perfect up-index: ‘ -1 ‘ 0 ‘-I ‘ 0 ‘ 1 ‘ 2 ‘-I ‘-I ‘ 7 ‘
hash.

(Disjoint Sets) Data Structures Fall 2020 22 /35

Room for Improvement: Weighted Union

e Always makes the root of the larger tree the new root
@ Often cuts down on height of the new up-tree

608 KRG\ | & &6
$ob N g dad
X

Couldwe doa
better job on this union?

Weighted union!

(Disjoint Sets) Data Structures Fall 2020 23 /35

Weighted Union Find Analysis

@ Finds with weighted union are O(max up-tree height)
@ But, an up-tree of height & with weighted union must have at least
2" nodes

Base case: 1= 0, tree has 2°= 1 node

\ Induction hypothesis: assume true for 7 < /'
and consider the sequence of unions.

Case 1: Union does not increase max height.

Resulting tree still has > 2% nodes.

Case 2: Union has height #'= 1+h, where h =

height of each of the input trees. By induction

hypothesis each tree has > 27-! nodes, so the

merged tree has at least 2% nodes. QED.

@ Hence, 2% height < 1 and max height < logn
@ So, find takes O(logn)

(Disjoint Sets) Data Structures Fall 2020 24 / 35

Alternatives to Weighted Union

@ Union by height
@ Ranked union (cheaper approximation to union by height)

(Disjoint Sets) Data Structures Fall 2020 25/ 35

Room for Improvement: Path Compression

@ Points everything along the path of a find to the root
@ Reduces the height of the entire access path to 1

@@@@@ @@@@@

While we’re finding e,

: ath compression!
could we do anything else? Path compression

(Disjoint Sets) Data Structures Fall 2020 26 / 35

Path Compression Example

find(¢)

(Disjoint Sets) Data Structures Fall 2020 27 / 35

Two Heuristics

@ Union by Rank

» Store rank of tree in rep.
Rank = tree size.
» Make root with smaller rank point to root with larger rank.

@ Path Compression
» During Find-Set, “flatten” tree.

d)
iﬂﬂ‘ =gz gl

(Disjoint Sets) Data Structures Fall 2020 28 /35

Make-Set(x)
plx] = x:
rank[x] := 0

Find-Set(x)
if x # p[x] then

fi;
return p[x]

plx] := Find-Set(p[x])

Link(x, y)
if rank[x] > rank[y] then
ply] = x
else
plx] = v

if rank[x] = rank[y] then
rank[y] := rank[y] + 1
fi
fi

Union(x, y)

Link(Find-Set(x), Find-Set(yv))

rank = u.b. on height

(Disjoint Sets)

Data Structures

Fall 2020 29 /35

(b)

A A

F-S(a)
pla] = F-S(b)
<[p[b] = F-5(c)
{ return ¢
return c
return c

Kx A

(Disjoint Sets) Data Structures Fall 2020 30 /35

A Slow Growing Function

Let log® n = log (log (log ... (log n)))

klogs

Then, let log* n = minimum % such that log® n <1
How fast does log™ n grow?

log" (2)=1

log" (4)=2

log" (16) =3

log" (65536) = 4

log" (20336) =35 (a 20,000 digit number!)

lOg* (2265536) -6

(Disjoint Sets) Data Structures Fall 2020 31/35

Complex Complexity of Weighted Union + Path

Compression

o Tarjan (1984) proved that m weighted union and find operations
with path compression on a set of n elements have worst case
complexity

O(m - log™(n))
actually even a little better!

@ For all practical purposes this is amortized constant time
(log"n <5)

(Disjoint Sets) Data Structures Fall 2020 32/35

One-pass path compression

@ We can modify the structure of the tree as each edge is processed
to attempt to save on the overall run-time of the algorithm.

@ When we do a Find, we can do a bit of “maintenance” work along
the path traversed.

What is happening to the
depth of the tree?

What impact does this work
have on future Find
operations?

(Disjoint Sets) Data Structures Fall 2020 33/35

n elements (n Make-Sets, at most n — 1 Unions)
m Make-Set, Union, and Find-Set operations
m = Q(n)

worst case = O(m - a(m,n)) = O(mlog" n)

a(m,n) is the inverse of Ackermann’s function a very very very
slow function

» A(l,j) =2jforj>1

> A(i,1) = A(i — 1,2) fori > 2

> A(i,j) = A(i — 1,A(i,j — 1)) fori,j > 2

» a(m,n) =min{i >1:A(i,m/n) > logn}

(Disjoint Sets) Data Structures Fall 2020 34 /35

Ackermann’s Function

Ackermann’s Function

etk 0

|1 2 3 4
I
1 jl ':]3 j?! j 4

. a2 2h 2l
" "’3 r_-,E' "Jj F 2 27

Al A |_':-'-: :1*.’

D 2 I'I [+ 2hy -IH) Ll =

3 'l]:' ']2 | ’]2 ; 9] 27l

(Disjoint Sets)

Data Structures

Fall 2020 35/ 35

	Disjoint Sets

