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Making a Good Maze

What's a Good Maze?
@ Connected ”[2&! i
@ Just one path between lq‘!f.‘{;-.‘%‘ T
any two rooms gﬂ@ﬂﬂl”:.'b’
@ Random |

The Maze Construction Problem

o Given:

» collection of rooms: V

» connections between rooms (initially all closed): E
@ Construct a maze:

» collection of rooms: V' =V
» designated roomsin,i € V,and out,0 € V
» collection of connections to knock down: E’ C E such that one

unique path connects every two rooms
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Maze Construction Algorithm

While edges remain in E
@ Remove a random edge e = (1, v) from E
How can we do this efficiently?

@ If u and v have not yet been connected

» addeto E
» mark u and v as connected

How to check connectedness efficiently?
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Equivalence Relations

@ An equivalence relation R(C A x A) must have three properties
» reflexive: Vx € A, (x,x) € R
» symmetric: (x,y) € R= (y,x) € R
» transitive: (x,y) € RA (y,z) € R= (x,z) € R

@ Connection between rooms is an equivalence relation

» any room is connected to itself

» if room a is connected to room b, then room b is connected to room a

» if room a is connected to room b and room b is connected to room c,
then room a is connected to room ¢
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Disjoint Set Union/Find ADT

Union/Find operations et

@ create finded) |
@ destroy o

@ union

o find wnion(3.6) <

@ Disjoint set partition property: element of a DS U/F structure
belongs to exactly one set with a unique name

@ Dynamic equivalence property: Union(a,b) creates a new set which is
the union of the sets containing 2 and b
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Construct the maze on
the right

2
Initial (the name of each @‘ !

set is in boldface):

{aj{b}{c}{d}{e}{f}{g}{h}{i}

Randomly select edge 1

Order of edges in blue
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Example, First Step

{ap{b}{c}{d}{e}{f}{g}{h}{i}
find(b) = b

®
2
find(e) = e @. ...... 4—

find(b) # find(e) so:
add1toE 11

9
union(b, e) O EOREO)

Order of edges in blue

{aHb,e}{ci{d}{f}{g}{h}{i}
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Up-Tree Intuition

e Finding the representative member of a set is somewhat like the
opposite of finding whether a given key exists in a set.

@ So, instead of using trees with pointers from each node to its
children; let’s use trees with a pointer from each node to its parent.

@ Each subset is an up-tree

with its root as its (=) @ @

representative member

@ All members of a given (@)

set are nodes in that set’s

up-tree

@ Hash table maps input
data to the node
associated with that data

Up-trees are not necessarily binary!
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find(f)
fmc_l(c) @4_»@ @
é g ; g D
(@ é O 1 D—0
. Just traverse to the root!
runtune:
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Union

union(a.c) -
g © O 5 60
@ - O—O
. Just hang one root from the other!
runtime:
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The Whole Example
@ 10 G

@ 0@
4©~®

union(b.e)

éééééé&éé
éiéé ofcXo¥e
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The Whole Example

@ @ 10 ’@
2 I 6
@ 4+ 7O
11 9 8
union(a,d) 12 '@

5866666
666 666

Data Structures Fall 2020 12 /35

!
o




The Whole Example

union(a,b)

b 46606
- 80086
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The Whole Example

find(d) = find(e)

& 60666

©

While we're finding e,
could we do anything else?
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The Whole Example

77
O &0

union(h,1) @ 12 ’@‘ 5 ’@

486633 36659
% 5
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The Whole Example

union(c,f)

é‘ éééé 0@ i
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The Whole Example

find(e) !
find(f) 8
union(a,c) <—>®

éééééi adlio
o éé

Could we do a

better job on this union?
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The Whole Example

find(f) *
find(i) §
union(c,h) 12 @

208 [ e
@o oo g
5 o
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The Whole Example

|
©
o

find(¢) = find(h) and find(b) = find(c)

So. no unions for cither of these.

(Disjoint Sets) Data Structures Fall 2020 19 /35

@
|
@
éjb

O—O—

12




The Whole Example

find(d)
find(g)

union(c, g)

Yo
é\g T o0 ®
é cééb 0
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The Whole Example

I
Q) - —©
|

O—© @? ©
—0—0® O—0—0O

tind(g) = find(h)
So. no union.
And, we’re done!

O—O—0

|

|

g/o ©—

QO O e
Ooh... scary!
Such a hard maze!
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Nifty storage trick

o A forest of up-trees can
easily be stored in an &@ @@

array.

@ Also, if the node names
are integers or

Characters, we can use a 0(a) 1(b) 2(c) 3(d) 4(e) 5(0) 6(2) 7(h) 8()
Vel‘y Simple, perfect up-index: ‘ -1 ‘ 0 ‘-I ‘ 0 ‘ 1 ‘ 2 ‘-I ‘-I ‘ 7 ‘
hash.
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Room for Improvement: Weighted Union

e Always makes the root of the larger tree the new root
@ Often cuts down on height of the new up-tree

608 KRG\ | & &6
$ob N g dad
X

Couldwe doa
better job on this union?

Weighted union!
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Weighted Union Find Analysis

@ Finds with weighted union are O(max up-tree height)
@ But, an up-tree of height & with weighted union must have at least
2" nodes

Base case: 1= 0, tree has 2°= 1 node

\ Induction hypothesis: assume true for 7 < /'
and consider the sequence of unions.

Case 1: Union does not increase max height.

Resulting tree still has > 2% nodes.

Case 2: Union has height #'= 1+h, where h =

height of each of the input trees. By induction

hypothesis each tree has > 27-! nodes, so the

merged tree has at least 2% nodes. QED.

@ Hence, 2% height < 1 and max height < logn
@ So, find takes O(logn)
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Alternatives to Weighted Union

@ Union by height
@ Ranked union (cheaper approximation to union by height)
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Room for Improvement: Path Compression

@ Points everything along the path of a find to the root
@ Reduces the height of the entire access path to 1

@@@@@ @@@@@

While we’re finding e,

: ath compression!
could we do anything else? Path compression
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Path Compression Example

find(¢)
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Two Heuristics

@ Union by Rank

» Store rank of tree in rep.
Rank = tree size.
» Make root with smaller rank point to root with larger rank.

@ Path Compression
» During Find-Set, “flatten” tree.

d)
iﬂﬂ‘ =gz gl
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Make-Set(x)
plx] = x:
rank[x] := 0

Find-Set(x)
if x # p[x] then

fi;
return p[x]

plx] := Find-Set(p[x])

Link(x, y)
if rank[x] > rank[y] then
ply] = x
else
plx] = v

if rank[x] = rank[y] then
rank[y] := rank[y] + 1
fi
fi

Union(x, y)

Link(Find-Set(x), Find-Set(yv))

rank = u.b. on height
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(b)

A A

F-S(a)
pla] = F-S(b)
<[p[b] = F-5(c)
{ return ¢
return c
return c

Kx A
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A Slow Growing Function

Let log® n = log (log (log ... (log n)))

klogs

Then, let log* n = minimum % such that log® n <1
How fast does log™ n grow?

log" (2)=1

log" (4)=2

log" (16) =3

log" (65536) = 4

log" (20336) =35 (a 20,000 digit number!)

lOg* (2265536) -6
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Complex Complexity of Weighted Union + Path

Compression

o Tarjan (1984) proved that m weighted union and find operations
with path compression on a set of n elements have worst case
complexity

O(m - log™(n))
actually even a little better!

@ For all practical purposes this is amortized constant time
(log"n <5)
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One-pass path compression

@ We can modify the structure of the tree as each edge is processed
to attempt to save on the overall run-time of the algorithm.

@ When we do a Find, we can do a bit of “maintenance” work along
the path traversed.

What is happening to the
depth of the tree?

What impact does this work
have on future Find
operations?
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n elements (n Make-Sets, at most n — 1 Unions)
m Make-Set, Union, and Find-Set operations
m = Q(n)

worst case = O(m - a(m,n)) = O(mlog" n)

a(m,n) is the inverse of Ackermann’s function a very very very
slow function

» A(l,j) =2jforj>1

> A(i,1) = A(i — 1,2) fori > 2

> A(i,j) = A(i — 1,A(i,j — 1)) fori,j > 2

» a(m,n) =min{i >1:A(i,m/n) > logn}
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Ackermann’s Function

Ackermann’s Function

etk 0

|1 2 3 4
I
1 jl ':]3 j?! j 4
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