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Making a Good Maze

What’s a Good Maze?
Connected
Just one path between
any two rooms
Random

The Maze Construction Problem
Given:

I collection of rooms: V
I connections between rooms (initially all closed): E

Construct a maze:
I collection of rooms: V′ = V
I designated rooms in, i ∈ V, and out, o ∈ V
I collection of connections to knock down: E′ ⊆ E such that one

unique path connects every two rooms
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Maze Construction Algorithm

While edges remain in E
1 Remove a random edge e = (u, v) from E

How can we do this efficiently?
2 If u and v have not yet been connected

I add e to E
I mark u and v as connected

How to check connectedness efficiently?
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Equivalence Relations

An equivalence relation R(⊆ A× A) must have three properties
I reflexive: ∀x ∈ A, (x, x) ∈ R
I symmetric: (x, y) ∈ R⇒ (y, x) ∈ R
I transitive: (x, y) ∈ R ∧ (y, z) ∈ R⇒ (x, z) ∈ R

Connection between rooms is an equivalence relation
I any room is connected to itself
I if room a is connected to room b, then room b is connected to room a
I if room a is connected to room b and room b is connected to room c,

then room a is connected to room c

(Disjoint Sets) Data Structures Fall 2020 4 / 35



Disjoint Set Union/Find ADT

Union/Find operations

create
destroy
union
find

Disjoint set partition property: element of a DS U/F structure
belongs to exactly one set with a unique name
Dynamic equivalence property: Union(a, b) creates a new set which is
the union of the sets containing a and b
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Example

Construct the maze on
the right

Initial (the name of each
set is in boldface):
{a}{b}{c}{d}{e}{f}{g}{h}{i}

Randomly select edge 1
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Example, First Step

{a}{b}{c}{d}{e}{f}{g}{h}{i}

find(b)⇒ b
find(e)⇒ e
find(b) 6= find(e) so:

add 1 to E
union(b, e)

{a}{b, e}{c}{d}{f}{g}{h}{i}
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Up-Tree Intuition

Finding the representative member of a set is somewhat like the
opposite of finding whether a given key exists in a set.
So, instead of using trees with pointers from each node to its
children; let’s use trees with a pointer from each node to its parent.

Each subset is an up-tree
with its root as its
representative member
All members of a given
set are nodes in that set’s
up-tree
Hash table maps input
data to the node
associated with that data
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Find
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Union
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The Whole Example
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The Whole Example
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Nifty storage trick

A forest of up-trees can
easily be stored in an
array.
Also, if the node names
are integers or
characters, we can use a
very simple, perfect
hash.
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Room for Improvement: Weighted Union

Always makes the root of the larger tree the new root
Often cuts down on height of the new up-tree
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Weighted Union Find Analysis

Finds with weighted union are O(max up-tree height)
But, an up-tree of height h with weighted union must have at least
2h nodes

Hence, 2max height ≤ n and max height ≤ log n
So, find takes O(log n)
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Alternatives to Weighted Union

Union by height
Ranked union (cheaper approximation to union by height)
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Room for Improvement: Path Compression

Points everything along the path of a find to the root
Reduces the height of the entire access path to 1
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Path Compression Example
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Two Heuristics

1 Union by Rank
I Store rank of tree in rep.

Rank ≈ tree size.
I Make root with smaller rank point to root with larger rank.

2 Path Compression
I During Find-Set, ”flatten” tree.
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Operations
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Find Set
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A Slow Growing Function
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Complex Complexity of Weighted Union + Path
Compression

Tarjan (1984) proved that m weighted union and find operations
with path compression on a set of n elements have worst case
complexity

O(m · log∗(n))

actually even a little better!
For all practical purposes this is amortized constant time
(log∗ n ≤ 5)
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One-pass path compression

We can modify the structure of the tree as each edge is processed
to attempt to save on the overall run-time of the algorithm.
When we do a Find, we can do a bit of ”maintenance” work along
the path traversed.
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Analysis

n elements (n Make-Sets, at most n− 1 Unions)
m Make-Set, Union, and Find-Set operations
m = Ω(n)

worst case = O(m · α(m,n)) = O(m log∗ n)

α(m,n) is the inverse of Ackermann’s function a very very very
slow function

I A(1, j) = 2j for j ≥ 1
I A(i, 1) = A(i− 1, 2) for i ≥ 2
I A(i, j) = A(i− 1,A(i, j− 1)) for i, j ≥ 2

I α(m,n) = min{i ≥ 1 : A(i,m/n) > log n}
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Ackermann’s Function
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