
Splay Trees

(Splay Trees) Data Structures Fall 2020 1 / 29



Basic Idea

Invented by Sleator and Tarjan (1985)
Blind rebalancing – no height info kept!
Worst-case time per operation is O(n)

Worst-case amortized time is O(log n)

Insert/find always rotates node to the root!
Good locality:

I Most commonly accessed keys move high in tree – become easier
and easier to find

I Incorporate Move-to-Top strategy

(Splay Trees) Data Structures Fall 2020 2 / 29



Idea

(Splay Trees) Data Structures Fall 2020 3 / 29



A Simple Idea (That Does Not Work)

Perform single rotations
bottom up.

There is a sequence of M
operations requiring
Ω(M · N) time, so this
idea is not quite good
enough.

(Splay Trees) Data Structures Fall 2020 4 / 29



Splaying

Splay(x): do following rotations until x is the root.
right (or left): if x has no grandparent.

Right rotation at x (and left rotation at y)

(Splay Trees) Data Structures Fall 2020 5 / 29



Splaying (Cont’d)

zig-zag (or zag-zig): if one of x, p(x) is a left child and the other is
a right child.

zig-zag at x

(Splay Trees) Data Structures Fall 2020 6 / 29



Splaying (Cont’d)

zig-zig: if x and p(x) are either both left children or both right
children.

zig-zig at x

(Splay Trees) Data Structures Fall 2020 7 / 29



Why Splaying Helps

Node n and its children are always helped (raised)
Except for last step, nodes that are hurt by a zig-zag or zig-zig are
later helped by a rotation higher up the tree!
Result:

I shallow nodes may increase depth by one or two
I helped nodes decrease depth by a large amount

If a node n on the access path is at depth d before the splay, it is at
about depth d/2 after the splay

I Exceptions are the root, the child of the root, and the node splayed

(Splay Trees) Data Structures Fall 2020 8 / 29



Splaying Example

(Splay Trees) Data Structures Fall 2020 9 / 29



Splaying Example (Cont’d)

(Splay Trees) Data Structures Fall 2020 10 / 29



Splaying Example (Cont’d)

(Splay Trees) Data Structures Fall 2020 11 / 29



Splaying Example (Cont’d)

(Splay Trees) Data Structures Fall 2020 12 / 29



Splaying Example (Cont’d)

(Splay Trees) Data Structures Fall 2020 13 / 29



Splaying Example (Cont’d)

(Splay Trees) Data Structures Fall 2020 14 / 29



Locality

Locality – if an item is accessed, it is likely to be accessed again
soon

I Why?

Assume m ≥ n access in a tree of size n
I Total worst case time is O(m log n)
I O(log n) per access amortized time

Suppose only k distinct items are accessed in the m accesses.
I Time is O(n log n + m log k)

F O(n log n) – getting those k items near root
F m log k – those k items are all at the top of the tree

I Compare with O(m log n) for AVL tree

(Splay Trees) Data Structures Fall 2020 15 / 29



Splay Operations: Insert

To insert, could do an ordinary BST insert
I but would not fix up tree
I A BST insert followed by a find (splay)?

Better idea: do the splay before the insert!
How?
Split(T, x) creates two BSTs L and R

I All elements of T are in either L or R
I All elements in L are ≤ x
I All elements in R are > x
I L and R share no elements

Insert as root, with children L and R

(Splay Trees) Data Structures Fall 2020 16 / 29



Splitting in Splay Trees

How can we split?
I We have the splay operation
I We can find x or the parent of where x would be if we were to insert

it as an ordinary BST
I We can splay x or the parent to the root
I Then break one of the links from the root to a child

(Splay Trees) Data Structures Fall 2020 17 / 29



Split

(Splay Trees) Data Structures Fall 2020 18 / 29



Back to Insert

(Splay Trees) Data Structures Fall 2020 19 / 29



Insert Example

(Splay Trees) Data Structures Fall 2020 20 / 29



Delete

(Splay Trees) Data Structures Fall 2020 21 / 29



Join

Join(L,R): given two trees such that L < R, merge them

Splay on the maximum element in L then attach R

(Splay Trees) Data Structures Fall 2020 22 / 29



Delete Completed

(Splay Trees) Data Structures Fall 2020 23 / 29



Delete Example

(Splay Trees) Data Structures Fall 2020 24 / 29



Top-down Splay

Case 1: X is the node we are splaying

Case 2: (zig-zig) The node we are splaying is in the subtree rooted
at X

(Splay Trees) Data Structures Fall 2020 25 / 29



Top-down Splay (Cont’d)

Case 3: (zig-zag) The node we are splaying is in the subtree rooted
at X

Case 4: (the last step) X is the node we wish to splay

(Splay Trees) Data Structures Fall 2020 26 / 29



Example Splay at B

(Splay Trees) Data Structures Fall 2020 27 / 29



Example Splay at B (Cont’d)

(Splay Trees) Data Structures Fall 2020 28 / 29



Summary

Splay trees are arguably the most practical kind of self-balancing
trees
If number of finds is much larger than n, then locality is crucial!
Also supports efficient Split and Join operations – useful for other
tasks

(Splay Trees) Data Structures Fall 2020 29 / 29


	Splay Trees

