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o Invented by Sleator and Tarjan (1985)

@ Blind rebalancing — no height info kept!

o Worst-case time per operation is O(n)

o Worst-case amortized time is O(logn)

o Insert/find always rotates node to the root!

o Good locality:

» Most commonly accessed keys move high in tree — become easier
and easier to find
» Incorporate Move-to-Top strategy
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Idea

move n to root ])J‘
series of zig-zag
and zig-zig
rotations, followed

by a final single
rotation (zig) if’
necessary

You're forced to make
areally deep access:
T

Since you're down there anyway,
fix up a lot of deep nodes!
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A Simple Idea (That Does Not Work)

@ Perform single rotations
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Splaying

Splay(x): do following rotations until x is the root.
@ right (or left): if x has no grandparent.
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Right rotation at x (and left rotation at v)
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Splaying (Cont’d)

@ zig-zag (or zag-zig): if one of x, p(x) is a left child and the other is
a right child.
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zig-zag at x
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Splaying (Cont’d)

@ zig-zig: if x and p(x) are either both left children or both right
children.

zig-zig at x
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Why Splaying Helps

@ Node n and its children are always helped (raised)

@ Except for last step, nodes that are hurt by a zig-zag or zig-zig are
later helped by a rotation higher up the tree!

@ Result:

» shallow nodes may increase depth by one or two
» helped nodes decrease depth by a large amount

@ If anode n on the access path is at depth d before the splay; it is at
about depth d/2 after the splay

» Exceptions are the root, the child of the root, and the node splayed
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Splaying Example

+ Example. Splay(1) ©
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Splaying Example (Cont’d)

« Example. Splay(1) ©
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Splaying Example (Cont’d)

« Example. Splay(1) ©
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Splaying Example (Cont’d)

- Example. Splay(1) ®)
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Splaying Example (Cont’d)

- Example. Splay(1) ®
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Splaying Example (Cont’d)

- Example. Splay(1) @\
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@ Locality —if an item is accessed, it is likely to be accessed again
soon

» Why?
@ Assume m > n access in a tree of size n
» Total worst case time is O(m logn)
» O(logn) per access amortized time
@ Suppose only k distinct items are accessed in the m accesses.

» Time is O(nlogn + mlogk)
* O(nlogn) — getting those k items near root
* mlogk — those k items are all at the top of the tree

» Compare with O(mlogn) for AVL tree
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Splay Operations: Insert

e To insert, could do an ordinary BST insert

» but would not fix up tree
» A BST insert followed by a find (splay)?

@ Better idea: do the splay before the insert!

e How?

Split(T, x) creates two BSTs L and R
All elements of T are in either L or R
All elements in L are < x
All elements in R are > x
L and R share no elements

v

vV vy

Insert as root, with children L and R
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Splitting in Splay Trees

e How can we split?

» We have the splay operation

» We can find x or the parent of where x would be if we were to insert
it as an ordinary BST

» We can splay x or the parent to the root

» Then break one of the links from the root to a child
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Split

N
could be x, or
what would

split(x)
have been the
\_ parentofx )
splay ‘
— ‘ if root is > x

ifrootis <x L_

OR
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Back to Insert

AN=AA= LN

Insert(x) :
Split on x

Join subtrees using x as root
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Insert Example

Insert(5)
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find(x) ﬁ\ delete x
L R

L R <X - X

Now what?
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Join

@ Join(L, R): given two trees such that L < R, merge them

Rpl'l\
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@ Splay on the maximum element in L then attach R
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Delete Completed
find(x) ﬂ delete x

(Splay Trees)
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Delete Example

Delete(4)

()
o @ ﬁnd(-l)

Find 111'1\

(q}la\ Trees) Data Structures Fall 2020 24 / 29



Top-down Splay

@ Case 1: X is the node we are splaying

B R
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o Case 2: (zig-zig) The node we are splaying is in the subtree rooted
at X
d a b
N
C
a b

o d
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Top-down Splay (Cont’d)

o Case 3: (zig-zag) The node we are splaying is in the subtree rooted

at X
A@@ A
. b}jf\c

? d
o Case 4: (the last step) X is the node we wish to splay
/A /@\b AR
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Example Splay at B
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Example Splay at B (Cont’d)
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@ Splay trees are arguably the most practical kind of self-balancing
trees

o If number of finds is much larger than n, then locality is crucial!

@ Also supports efficient Split and Join operations — useful for other
tasks
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