Splay Trees

(Splay Trees) Data Structures Fall 2020 1/29

o Invented by Sleator and Tarjan (1985)

@ Blind rebalancing — no height info kept!

o Worst-case time per operation is O(n)

o Worst-case amortized time is O(logn)

o Insert/find always rotates node to the root!

o Good locality:

» Most commonly accessed keys move high in tree — become easier
and easier to find
» Incorporate Move-to-Top strategy

(Splay Trees) Data Structures Fall 2020 2/29

Idea

move n to root])J‘
series of zig-zag
and zig-zig
rotations, followed

by a final single
rotation (zig) if’
necessary

You're forced to make
areally deep access:
T

Since you're down there anyway,
fix up a lot of deep nodes!

(Splay Tr Data Structures Fall

20 3/29

A Simple Idea (That Does Not Work)

@ Perform single rotations

bottom up. R
//\\\ B
®_ —
o \y\l A .
5 >:\ ‘/\ Ol B G
/\N/ o / AR RN
N VONERVON e YN
& : o L
& N ZN
6 N T .

e o & @ There is a sequence of M
7 N — . o .
VANSPAIN) operations requiring

LN Q(M - N) time, so this
o T idea is not quite good
ANA A A enough.

(Splay Trees) Data Structures Fall 2020 4/29

Splaying

Splay(x): do following rotations until x is the root.
@ right (or left): if x has no grandparent.

right

=D

et / \
<}='e _ﬁ\ Fa
FEN LA

Right rotation at x (and left rotation at v)

(Splay Trees) Data Structures Fall 2020 5/29

Splaying (Cont’d)

@ zig-zag (or zag-zig): if one of x, p(x) is a left child and the other is
a right child.

foN FAPRY
fa\ . p 9 / o\ / IEAVEAWER
/ /N \ /
AANVAA JAANVADN

zig-zag at x

(Splay Trees) Data Structures Fall 2020 6/29

Splaying (Cont’d)

@ zig-zig: if x and p(x) are either both left children or both right
children.

zig-zig at x

(Splay Trees) Data Structures Fall 2020 7/29

Why Splaying Helps

@ Node n and its children are always helped (raised)

@ Except for last step, nodes that are hurt by a zig-zag or zig-zig are
later helped by a rotation higher up the tree!

@ Result:

» shallow nodes may increase depth by one or two
» helped nodes decrease depth by a large amount

@ If anode n on the access path is at depth d before the splay; it is at
about depth d/2 after the splay

» Exceptions are the root, the child of the root, and the node splayed

(Splay Trees) Data Structures Fall 2020 8/29

Splaying Example

+ Example. Splay(1) ©

(Splay Trees) Data Structures Fall 2020 9/29

Splaying Example (Cont’d)

« Example. Splay(1) ©

(’_\
@

(Splay Trees) Data Structures Fall 2020 10 / 29

Splaying Example (Cont’d)

« Example. Splay(1) ©

(Splay Trees) Data Structures Fall 2020 11 /29

Splaying Example (Cont’d)

- Example. Splay(1) ®)

./
u\

{)\@

()

(Splay Trees) Data Structures Fall 2020 12 /29

Splaying Example (Cont’d)

- Example. Splay(1) ®

Data Structures Fall 2020 13 /29

Splaying Example (Cont’d)

- Example. Splay(1) @\

Data Structures Fall 2020 14 /29

@ Locality —if an item is accessed, it is likely to be accessed again
soon

» Why?
@ Assume m > n access in a tree of size n
» Total worst case time is O(m logn)
» O(logn) per access amortized time
@ Suppose only k distinct items are accessed in the m accesses.

» Time is O(nlogn + mlogk)
* O(nlogn) — getting those k items near root
* mlogk — those k items are all at the top of the tree

» Compare with O(mlogn) for AVL tree

(Splay Trees) Data Structures Fall 2020 15/ 29

Splay Operations: Insert

e To insert, could do an ordinary BST insert

» but would not fix up tree
» A BST insert followed by a find (splay)?

@ Better idea: do the splay before the insert!

e How?

Split(T, x) creates two BSTs L and R
All elements of T are in either L or R
All elements in L are < x
All elements in R are > x
L and R share no elements

v

vV vy

Insert as root, with children L and R

(Splay Trees) Data Structures Fall 2020 16 / 29

Splitting in Splay Trees

e How can we split?

» We have the splay operation

» We can find x or the parent of where x would be if we were to insert
it as an ordinary BST

» We can splay x or the parent to the root

» Then break one of the links from the root to a child

(Splay Trees) Data Structures Fall 2020 17 / 29

Split

N
could be x, or
what would

split(x)
have been the
_ parentofx)
splay ‘
— ‘ if root is > x

ifrootis <x L_

OR

18 /29

Data Structures Fall

Back to Insert

AN=AA= LN

Insert(x) :
Split on x

Join subtrees using x as root

(Splay Trees) Data Structures Fall 2020 19 /29

Insert Example

Insert(5)

(Splay Trees) Data Structures Fall 2020 20 /29

find(x) ﬁ\ delete x
L R

L R <X - X

Now what?

(Splay Trees) Data Structures Fall 2020 21/29

Join

@ Join(L, R): given two trees such that L < R, merge them

Rpl'l\

AAZAAT

@ Splay on the maximum element in L then attach R

(Splay Trees) Data Structures Fall 2020 22/29

Delete Completed
find(x) ﬂ delete x

(Splay Trees)

L

R

Data Structures

Join(L.R) l

Fall 2020 23 /29

Delete Example

Delete(4)

()
o @ ﬁnd(-l)

Find 111'1\

(q}la\ Trees) Data Structures Fall 2020 24 / 29

Top-down Splay

@ Case 1: X is the node we are splaying

B R

AN
a e} o
o Case 2: (zig-zig) The node we are splaying is in the subtree rooted
at X
d a b
N
C
a b

o d
(Splay Trees) Data Structures Fall 2020 25/29

Top-down Splay (Cont’d)

o Case 3: (zig-zag) The node we are splaying is in the subtree rooted

at X
A@@ A
. b}jf\c

? d
o Case 4: (the last step) X is the node we wish to splay
/A /@\b AR

(Splay Trees) Data Structures Fall 2020 26 /29

Example Splay at B
A:Q) E é‘:g
Q\ﬁ
(a) 5
S
2 3 l
A @B A ©
S
1 (}%4 6
S

(Splay Trees) Data Structures Fall 2020

N
|
)
©

/

Example Splay at B (Cont’d)

(Splay Trees) Data Structures Fall 2020 28 /29

@ Splay trees are arguably the most practical kind of self-balancing
trees

o If number of finds is much larger than n, then locality is crucial!

@ Also supports efficient Split and Join operations — useful for other
tasks

(Splay Trees) Data Structures Fall 2020 29/29

	Splay Trees

