Data Structure

Fall 2020, Homework #4 Solution

1 (a). 8% » EATE merge tree BBFE R & merge degree 1H[EIHY tree » tree AY node El&E R FIHE
2 21R A - ZEE|IZEMIE operations » insertion REE4 node HEA 1 AY tree » T find-
andremove-min 1T 8 & merge degree 1H[E]HY tree:

degree 25 1 B tree F degree A 0 BY tree merge M2K > node BNEA 2 ©

degree A5 2 B tree FH degree A5 1 BY tree merge M2K » node BE= A 4 ©

degree A5 3 B tree FH degree 4 2 BY tree merge MK > node BNE 4 8 ©

g 24 find-andremove-min BEJE/D node L= > {B¥1T18 tree EHEIFREX degree 1R tree » node £X
sS04 1,2, 4, ..., 2 (degree-1) {i] node ° node HEMRAEE 2 X - FALtRBEmMIE
operation EEES node =4 5 HY tree ©

1 (b) AIBA > $RERIA TS ER:

O=OOOOOOOOD
(D
B ololo

decrease-key

8to0
3tol




2 (a) The original union-find data structure utilizes weighted / rank union or union by height in
order to achieve a better time per operation measurement. If we were to change the way union is
done and make the minimum element be the root of the tree for its set, we might have to ignore the

ranks / heights of the trees to be merged. This will then negatively impacts the time per operation.

2 (b) Add an additional field to the tree nodes for storing the smallest member amongst its sub trees.
In make-set, the smallest member is the node itself. In union operation, we need to compare the
values stored in the two roots, and take the smaller one as the value for the new root. In find, one
simply traverse the tree upwards to the root, and return the value stored in the root node. Note that
although we have this field for every tree node, we only need to maintain the value for the root

node.

3(a)
Algorithm:
step 1. 3& n~1 {XKE XA queue A °
step 2. insert(0)
step 3. 1€ queue I E element e > insert(e)
step 4. insert(n+1)
step 5. remove-min()

step 6. decrease-key(n+1, 0)
step 7. EBAEHAT step 3~6 EHZ! queue A%

step 8. remove-min()

B—R#AT step2,3,4,51%& > B

BT step 6 BEZRY -
BEE—§Fstep3 ~6:

Step 3: Step 4: Step 5: Step 6:

ELEAREREE step 3~6 FLAIMEE —IERE %A n B9 chain » &% remove-min & 0 E3ZE[
T o



3 (b)
Algorithm:

step 1. 1 n~1 kI queue F » T E H element e E1E t
step 2. fit queue AE WMEH element e » 81 t &
step 3. EEH T step 2 » HE queue BZE

@ insert @ @ merge ( and swap )
insert @ merge (and swap )

insert

4 (a) Similar to how we build mazes using union-find data structure. We start by putting each node
into its own set. We then go through all the edges (by iterating through the adjacency lists of all
nodes). For each edge e = (v, v,), perform union(v;, v,). When we’re done, the number of sets in
the union-find data structure is exactly the number of connected components in the graph.

4 (b) we performed n Make-Set operations, so it takes n X O(1) = O(n). Assume the union-find data
structure we use implements weighted union and path compression. Since we performed m union
operations, it takes O(m . 1og*(n)) (assuming that m = (n)). So the total time is

O(n +m -log*(n)).

4(c) S=0
ForveV:{
If v is not marked {
Mark v and add v to S.
Perform depth-first-search starting from v and mark all the nodes encountered on the
way.
}

Return: the number of elements in S.



Time complexity: O(n + m)

Since each node will be marked exactly once, marking the nodes takes O(n). Once an edge

is visited in the depth-first search, both nodes connected to the edge will be marked.

Therefore the same edge will never be visited again by the algorithm. Hence the time it

takes to complete the rest of the algorithm is O (m).

A[O

A[O

A[2

A0

All

A1

All

A[O




