
Data Structures and Programming
Midterm Exam. Spring, 2007

1. (10 pts) Show the resulting tree if we search for 70 in the splay tree below and perform the appropriate
splay. Show your work in sufficient detail.

10

20

30

40

50

60

70

Figure 1: Tree 1

2. (18 pts) Consider the following AVL free. Answer the following two questions. You must show your
derivations in detail in order to receive full credit.

(a) Show the resulting tree after inserting 23 to the tree.

(b) Show the resulting tree after deleting 91 from the original tree.

47 

24 82 

56 91 39 12 

67 31 17 2 

22 5 

Figure 2: Tree 2

3. (8 pts) Suppose Tree 2 above is an ordered tree. Draw its binary tree representation (i.e., first-
child/next-sibling representation).

4. (12 pts) Suppose you are given the following facts (procedures): preorder, inorder and postorder
traversals of a binary tree of n nodes take O(n) time; push and pop operations of a stack take O(1)
time; dequeue and enqueue operations of a queue take O(1) time; insertion/deletion/search of an AVL
tree take O(logn) time; insertion/deletion/search of a splay tree may require Ω(n) in the worst case;
finding the maximum/minimum/arbitrary element of an array takes O(n) time; binary search of a
sorted array takes O(logn) time.

(a) (6 pts) Can you use some of the above facts to design an efficient sorting algorithm? Explain
your algorithm in sufficient detail. What is the running time of your algorithm?

(b) (6 pts) Given two sets S1 and S2 of keys, design an algorithm (based on the above facts) to output
(in increasing order) the set of keys that are in S1 but not in S2. (For instance, if S1 = {2, 4, 6, 7, 8}
and S2 = {2, 7}, then the output should be 4, 6, 8.) Originally S1 and S2 are not sorted. What is
the running time of your algorithm?

1



Note: Points received depend on the efficiency of your algorithm.

5. (6 pts) Write an algorithm (in Chinese or English) to print a singly linked list in reverse, using only
constant extra space. (That is, if the list is → 1 → 2 → 3 → 4 → 5 → NIL, then the output should
be 5 4 3 2 1.) This means that you cannot use recursion. Assume that the linked list is constructed
using dynamic memory allocation.

6. (6 pts) Suppose we have a pointer to a node in a singly linked list that is guaranteed not to be the
last node in the list. We do not have pointers to any other nodes (except by following links). Describe
an O(1) algorithm (in Chinese or English) that logically removes the value stored in such a node from
the linked list, maintaining the integrity of the linked list. For example, remove b (which is pointed to
by p) from the following list.

p

a b c d

7. (40 points) Answer the following questions. No explanations are needed.

(a) (3 pts) Suppose that we start with an empty splay tree and insert n distinct keys. Then, in an
arbitrary order, we search for each of these n keys. What is the total time (in big-Oh notation)
required in the worst-case for this entire sequence of operations?

(b) (3 pts) Suppose we define a variation on AVL trees in which the heights of the left and right
subtrees of a node could differ by at most 2 (rather than at most 1). What recurrence relation
would we get for the minimum number nk of keys in a tree of height k?

(c) (8 pts) Write in Θ-notation the amount of time used by each of the the code segments below.

(1) for (i = 0; i < n; i + +) {
for (j = 1; j < n; j = 3 ∗ j) {

x = x + 1;
}

}
(2) sum = 0;

for (i = 0; i < n; i = i + 2) {
for (j = n ∗ n; j > 4; j = j − 1) {

sum = sum + 1;
}

}
(d) (5 pts) Suppose that a certain binary tree on seven nodes has inorder traversal PQRSTUV and

postorder traversal QRPTUV S. Draw the tree.

(e) (5 pts) Below is a post-order traversal of a binary search tree. Draw the tree.

12 9 24 17 40 49 38

(f) (6 pts) Given an AVL tree of n nodes. What is the number of rotations needed in the worst case
to re-balance the tree when a (1) deletion (2) insertion is carried out?

(g) (4 pts) Draw an AVL tree of height 3 with a minimum number of nodes.

(h) (6 pts) Suppose T1 and T2 are two binary search trees of heights h1 and h2, respectively, and the
largest key in T1 is smaller than the smallest key in T2. Can you design an algorithm in O(h1+h2)
time to combine the two trees into a single binary search tree? Explain why your algorithm takes
O(h1 + h2) time.

2


