
Data Structures and Programming
Spring 2014, Midterm Exam.

1. (10 pts) Order the following functions
2.2n, log(n10), 22012, 25n× log(n), 1.1n, 2n5.5, 4× log(n), 210, n1.02, 5n5, 76n, 8n5 + 5n2

by their asymptotic growth rate, in non-decreasing order. Indicate by circling those functions that are ”big-
Theta” (i.e., Θ(..)) of each other.
Solution:

22012 = 210 < log(n10) = 4× log(n) < 76n < 25n× log(n) < n1.02 < 5n5 = 8n5 + 5n2 < 2n5.5 <
1.1n < 2.2n

2. (8 pts) Give the best asymptotic (”big-Oh”, i.e., O(...)) characterization of the best and worst case time
complexity of the algorithm Count(A,B, n). Explain in detail how you computed the complexity. Note that ←
denotes the assignment statement.

Algorithm Count(A,B, n)
Input: Arrays A and B of size n.

A, B store positive integers.
i← 0
sum← 0
while i < n do

if A[i] < n then
for j ← 0 to A[i] do

sum← sum+B[j]
i← i+ 1

return sum

Solution:
Best case: O(n) when ”if A[i] < n ...” always false;
Worst case: O(n2) when when ”if A[i] < n ...” always true

3. (10 pts) Consider the use of the exclusive-or encoding method to represent doubly linked lists as discussed in
class. Given a node X, let Link(X) be the exclusive-or encoding kept in node X, i.e., Link(X) is the outcome
of taking the exclusive-or of the addresses of X’s predecessor and successor along the list. Consider a doubly
linked list consisting of the following: X1 X2 X3 X4 X5 X6. Suppose pointers P and Q point to nodes X3

and X4, respectively. Explain the updates needed to ”delete” X3 and X4, making the new list X1 X2 X5 X6.
Note that after the deletion, P and Q point to X2 and X5, respectively. Use additional temporary pointer(s), if

needed. You may use the notation

 x
y
...

←
 exp1

exp2
...

 defined in class to describe your algorithm.

Solution:

Before
Address Link(Link(P) ⊕ Q) Link(P) ⊕ Q P Q Link(Q) ⊕ P Link(Link(Q) ⊕ P)

⊕ P ⊕ Q
Node X1 X2 X3 X4 X5 X6

After
Address Pnew ← Link(P) ⊕ Q Qnew ← Link(Q) ⊕ P
Node X1 X2 X5 X6

Link (Link(Link(P) ⊕ Q) (Link(Link(Q) ⊕ P))
⊕ P) ⊕ (Link(Q) ⊕ P) ⊕ Q) ⊕ (Link(P) ⊕ Q)

Hence, the operations are
P
Q

Link(Link(P)⊕ Q)
Link(Link(Q)⊕ P)

←


Link(P)⊕ Q
Link(Q)⊕ P

(Link(Link(P)⊕ Q) ⊕ P) ⊕ (Link(Q) ⊕ P)
(Link(Link(Q)⊕ P)) ⊕ Q) ⊕ (Link(P) ⊕ Q)



1

4. (10 pts) Suppose that we have numbers between 1 and 1000 in a binary search tree and want to search for the
number 363. For each of the following sequences, can it be the sequence of nodes examined? Yes or No? No
explanations are needed.

(a) 2, 252, 401, 398, 330, 344, 397, 363

(b) 924, 220, 911, 244, 898, 258, 362, 363

(c) 925, 202, 911, 240, 912, 245, 363

(d) 2, 399, 387, 219, 266, 382, 381, 278, 363

(e) 935, 278, 347, 621, 299, 392, 358, 363

Solutions: (c) and (e): NO.

5. (12 pts) Consider the following AVL tree. Perform operation delete(1) and rebalance the tree if necessary. You
have to use exactly the same algorithm as in class. Show all the intermediate trees. Solution

Figure 1: An AVL tree

2

6. (10 pts)

(a) (4 pts) Define threaded binary trees.
Solution: A binary tree is threaded by making all right child pointers that would normally be null point
to the inorder successor of the node, and all left child pointers that would normally be null point to the
inorder predecessor of the node.

(b) (6 pts) Design a non-recursive algorithm to do inorder traversal of a threaded binary tree. Explain your
algorithm in Chinese or English. Also use an example to show how your algorithm works.
Solution:

3

7. (10 pts) Draw the expression tree and write the prefix and postfix forms for the following expression.

(A+B) ∗D + (E/(F +A ∗D)) + C.

Solution

A B

+ D

*

+

/

E +

F *

A D

+

C

Prefix: + + * + A B D / E + F * A D C
Postfix: A B + D * E F A D * + / + C +

8. (15 pts)

(a) (10 pts) Draw the Splay tree that results from inserting the keys 4, 9, 3, 7, 5, 6 in that order into an
initially empty Splay tree. Show all the intermediate trees (i.e., draw the tree after each insertion is carried
out). Also find the potential for each intermediate tree using the potential function discussed in class (i.e.,
potential of a tree T is

∑
node x in T ⌊log(size(x))⌋, where size(x) is the number of nodes in the subtree

rooted at x.
Solution

Potential of the final tree is
⌊log(size(x3))⌋ + ⌊log(size(x4))⌋ + ⌊log(size(x5))⌋+ ⌊log(size(x6))⌋ + ⌊log(size(x7))⌋ + ⌊log(size(x9))⌋
=
0 + 1 + 1 + 2 + 1 + 0 = 5

(b) (5 pts) Suppose we want to insert 10 numbers ({1, 2..., 10}) into an initially empty Splay tree. What will
be the order of insertions what will result in a splay tree of height 10 (i.e., becoming a list). Why?
Solution: The keys of value 10, 9 ,.., 4, 3, 2, 1 are inserted in this order in a splay tree. The resulting tree is:

1
2
3
...
10

4

9. (10 pts) A red-black binary search tree (BST) is called a left-leaning red-black BST if red links lean left (i.e.,
each red node is the left child of its parent). See Figure 2 for an example. Figure 3 summarizes the rebalancing
rules for left-leaning red-black trees w.r.t. insertion. Suppose we insert key 99 into the tree in Figure 2. Show
how to rebalance the tree. Show your derivation in sufficient detail.

61

19

13

21

96

90

72

51

88

40

24 86

red link

Figure 2: A left-leaning red-black BST

・
・ rotate right.

・
flip

colors

right
rotate

left
rotate

h

h

h

Figure 3: Rebalancing rules

Solution:

To insert 99, we do two color flips, followed by one left rotation. Here is a drawing of the

resulting red-black BST.

6119

13

21

96

9072

51

88

40

24

86

99

10. (5 pts) Let A be an array of N integers. Give an algorithm to output all the distinct numbers in A in ascending
order. Your algorithm must finish in O(N log T) time, where T is the number of distinct integers in A. For
example, given A = {35, 10, 59, 17, 61, 17, 52, 10}, your algorithm should output 10, 17, 35, 52, 59, 61. Describe
your algorithm in English or Chinese, and explain why your algorithm takes O(NlogT) time.
Solution: Scan the array and maintain all the distinct numbers in a binary tree. After reading the next element,
perform dictionary search to check if it already exists in the tree, and output it if not (in which case we insert
the element in the tree). As the tree indexes at most T elements at any moment, the total cost is O(NlogT).

5

