Fibonacci Heaps

(Fibonacci Heaps) Data Structures and Programming Spring 2017 1/37

Fibonacci Heaps

@ Fibonacci heap history. Fredman and Tarjan (1986)
» Ingenious data structure and analysis.
» Original motivation: O(m + nlogn) shortest path algorithm.
* also led to faster algorithms for MST, weighted bipartite matching
» Still ahead of its time.
e Fibonacci heap intuition.

» Similar to binomial heaps, but less structured.
» Decrease-key and union run in O(1) time.
» “Lazy” unions.

(Fibonacci Heaps) Data Structures and Programming Spring 2017 2/37

Fibonacci Heaps: Structure

e Fibonacci heap.
Set of min-heap ordered trees.

min

©) 3

marked —§k] @

39

@)
@)

(Fibonacci Heaps) Data Structures and Programming Spring 2017 3/37

Fibonacci Heaps: Implementation

Implementation.
« Represent trees using left-child, right sibling pointers and circular,
doubly linked list.

- can quickly splice off subtrees

« Roots of trees connected with circular doubly linked list.
- fast union

« Pointer to root of tree with min element.
- fast find-min

(Fibonacci Hg 1ps) Data Structures and Programming Spring 2017 4/37

Fibonacci Heaps: Potential Function

Key quantities.
« Degree[x] = degree of node x.
« Mark[x] = mark of node x (black or gray).
« t{H) =#trees.
- m{H) = # marked nodes.
« @(H) = t{H) + 2m(H) = potential function.

t(H) =5, m(H)=3
D(H) = 11

degree =3 min

|

()
@ 3

@ @ @
39 (32)

(Fibonacci Heaps) Data Structures and Programming Spring 2017

Fibonacci Heaps: Insert

Insert.
« Create a new singleton tree.
« Add to left of min pointer.
« Update min pointer.

Insert 21

min

@ @ @
39 (32)

(Fibonacci Heaps) Data Structures and Programming Spring 2017 6 /37

Fibonacci Heaps: Insert

Insert.

« Create a new singleton tree.

« Add to left of min pointer.

« Update min pointer.

(Fibonacci Heaps)

Insert 21

min

Data Structures and Programming

@ @ @
39 (32)

Spring 2017 7 /37

Fibonacci Heaps: Insert

Insert.
« Create a new singleton tree.
« Add to left of min pointer.
« Update min pointer.

Running time.
. Actual cost = O(1). Insert 21
« Change in potential = +1.

- Amortized cost = O(1). min

H
(Fibonacci Heaps) Data Structures and Programming Spring 2017 8/37

Binomial Heap: Union

Union.
. Concatenate two Fibonacci heaps.
- Root lists are circular, doubly linked lists.

(Fibonacci Heaps) Data Structures and Programming Spring 2017 9/37

Fibonacci Heaps: Union

Union.
. Concatenate two Fibonacci heaps.
= Root lists are circular, doubly linked lists.

Running time.
. Actual cost = O(1).
. Change in potential=0.
. Amortized cost = O(1).

(Fibonacci Heaps) Data Structures and Programming ¢ 017 10 / 37

Fibonacci Heaps: Delete Min

Delete min.
. Delete min and concatenate its children into root list.

(Fibonacci Heaps) Data Structures and Programming Spring 2017 11 /37

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same degree.

current
min l

}i (22) @ @ @ @)
@ @
(35)

(Fibonacci Heaps) Data Structures and Programming Spring 2017 12 /37

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same degree.

current
min l

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same degree.

current

min

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same degree.

26 @ current @
(39)

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Delete Min

Delete min.

. Consclidate trees so that no two roots have same degree.

Z @
26 @ current @

| Merge 17 and 23 trees. |

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Delete Min

Delete min.

. Consclidate trees so that no two roots have same degree.

current

Merge 7 and 17 trees. |

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Delete Min

Delete min.

- Consolidate trees so that no two roots have same degree.

current

(Fibonacci Heaps) Data Structures and Programming Spring 2017 18 / 37

Fibonacci Heaps: Delete Min

Delete min.

« Consolidate trees so that no two roots have same degree.

0123
[] [] ,
min current

(Fibonacci Heaps) Data Structures and Programming Spring 2017 19 /37

Fibonacci Heaps: Delete Min

Delete min.

« Consolidate trees so that no two roots have same degree.

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Delete Min

Delete min.

« Consolidate trees so that no two roots have same degree.

current

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same degree.

current

(Fibonacci Heaps) Data Structures and Programming Spring 2017 22 /37

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same degree.

current

(Fibonacci Heaps) Data Structures and Programming Spring 2017

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same degree.

current

(Fibonacci Heaps) Data Structures and Programming Spring 2017 24 /37

Fibonacci Heaps: Delete Min

Delete min.

« Consclidate trees so that no two roots have same degree.

(Fibonacci Heaps) Data Structures and Programming Spring 2017 25 /37

Fibonacci Heaps: Delete Min Analysis

Notation.
« D(n)
. t(H)
. O(H)

max degree of any node in Fibonacci heap with n nodes.

#trees in heap H.
t{H) + 2m(H).

Actual cost.
« O(D(n)) work adding min's children into root list and updating min.
- at most D(n) children of min node
« O(D(n) + t{H)) work consolidating trees.

- work is proportional to size of root list since number of roots
decreases by one after each merging

- < D(n) + t(H) - 1 root nodes at beginning of consolidation

Amortized cost.
- t{H') < D(n)+ 1 since no two trees have same degree.
« A®(H)< D(n})+ 1 -t{H).

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Delete Min Analysis

Is amortized cost of O(D({n)) good?

« Yes, if only Insert, Delete-min, and Union operations supported.

- in this case, Fibonacci heap contains only binomial trees since
we only merge trees of equal root degree

- this implies D(n) < |log, N

- Yes, if we support Decrease-key in clever way.
- we'll show that D(n) < [log, N, where ¢ is golden ratio
—g2= 14 ¢
- =(1++5)/2=1618...
- limiting ratio between successive Fibonacci numbers!

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 0: min-heap property not viclated.
- decrease key of xto k
- change heap min pointer if necessary

min

| Decrease 46 to 45.

(Fibonacci Heaps) Data Structures and Programming Spring 2017 28 /37

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 1. parent of x is unmarked.
- decrease key of xto k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 1. parent of x is unmarked.
- decrease key of xto k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 1. parent of x is unmarked.
- decrease key of xto k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 2: parent of x is marked.
- decrease key of xto k
- cut off link between x and its parent p[x], and add x to root list
- cut off link between p[x] and p[p[x]], add p[x] to root list
#° If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

min

| Decrease 35 to 5.

(Fibonacci Heaps) Data Structures and Programming Spring 2017 32/37

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 2: parent of x is marked.
—decrease key of xto k
- cut off link between x and its parent p[x], and add x to root list
- cut off link between p[x] and p[p[x]], add p[x] to root list
If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

(s)
19 (9

parent marked

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 2: parent of x is marked.
- decrease key of xto k
- cut off link between x and its parent p[x], and add x to root list
- cut off link between p[x] and p[p[x]], add p[x] to root list
& If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 2: parent of x is marked.
- decrease key of xto k
- cut off link between x and its parent p[x], and add x to root list
- cut off link between p[x] and p[p[x]], add p[x] to root list
& If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

18)-(&)-(26)(29)

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Decrease Key Analysis

Notation.

« t(H) = #trees in heap H.

« m{H) = # marked nodes in heap H.
« ©(H) = t(H) + 2m{H).

Actual cost.

« O(1) time for decrease key.
« O(1) time for each of ¢ cascading cuts, plus reinserting in root list.

Amortized cost.
- t{H') =tH)+c
« m(H)< m{H)-c+2
- each cascading cut unmarks a node
- last cascading cut could potentially mark a node
« AD < c+2(c+2) =4-c.

(Fibonacci Heaps) Data Structures and Programming

Fibonacci Heaps: Delete

Delete node x.
. Decrease key of x to -«.
« Delete min element in heap.

Amortized cost.
« O(1) for decrease-key.
« O(D(n)) for delete-min.
- D{n) = max degree of any node in Fibonacci heap.

(Fibonacci Heaps) Data Structures and Programming

	Fibonacci Heaps

