Hashing

(Hashing) Data Structures and Programming Sprir

plve 1/27

Hash table

@ Support the following operations
» Find
> Insert
» Delete. (deletions may be unnecessary in some applications)
@ Unlike binary search tree, AVL tree and B+-tree, the following
functions cannot be done:
» Minimum and maximum
» Successor and predecessor
» Report data within a given range
» List out the data in order

(Hashing) Data Structures and Programming Spring 2017

Unrealistic solution

@ Each position (slot) corresponds to a key in the universe of keys

» T[k] corresponds to an element with key k
» If the set contains no element with key k, then T[k]=NULL

(Hashing) Data Structures and Programming

Unrealistic solution

@ Insert, delete and find all take O(1) (worst-case) time
@ Problem:

» The scheme wastes too much space if the universe is too large
compared with the actual number of elements to be stored. E.g.
student IDs are 8-digit integers, so the universe size is 108, but we
only have about 7000 students

(Hashing) Data Structures and Programming Spring 2017 4/27

{K,.K,,..., K, _,} possible keys

hash function h

hash table

Usually, m << N.
h(K;) = an integer in [0, - - - ,m — 1] called the hash value of K;

(Hashing) Data Structures and Programming Spring 2017

Example applications

@ Compilers use hash tables (symbol table) to keep track of declared
variables.

@ On-line spell checkers. After prehashing the entire dictionary, one
can check each word in constant time and print out the misspelled
word in order of their appearance in the document.

@ Useful in applications when the input keys come in sorted order.
This is a bad case for binary search tree. AVL tree and B+-tree are
harder to implement and they are not necessarily more efficient.

(Hashing) Data Structures and Programming Spring 2017 6 /27

Hashing

o With hashing, an element of key k is stored in T[h(k)]

hik)
hlk41

.‘!(kzj = Ii[kS}
hik,)

m-1

@ /i: hash function

» maps the universe U of keys into the slots of a hash table
T[0,1,...,m — 1]

» an element of key k hashes to slot i(k)

> h(k) is the hash value of key k

(Hashing) Data Structures and Programming

@ Problem: collision

» two keys may hash to the same slot
» can we ensure that any two distinct keys get different cells?
No, if |U| > m, where m is the size of the hash table

@ Design a good hash function

» that is fast to compute and
» can minimize the number of collisions

@ Design a method to resolve the collisions when they occur

(Hashing) Data Structures and Programming Spring 2017

Hash Function

@ The division method
> h(k) =k mod m
» eg.m=12k=100,h(k) =4
Requires only a single division operation (quite fast)
@ Certain values of m should be avoided
» e.g. if m =27, then h(k) is just the p lowest-order bits of k; the hash
function does not depend on all the bits

» Similarly, if the keys are decimal numbers, should not set m to be a
power of 10

o It's a good practice to set the table size m to be a prime number

@ Good values for m: primes not too close to exact powers of 2

> e.g. the hash table is to hold 2000 numbers, and we don’t mind an
average of 3 numbers being hashed to the same entry. (Choose
m = 701)

(Hashing) Data Structures and Programming Spring 2017 9/27

Hash Function...

o Can the keys be strings?
@ Most hash functions assume that the keys are natural numbers

» if keys are not natural numbers, a way must be found to interpret
them as natural numbers

@ Method 1

» Different permutations of the same set of characters would have
the same hash value

» If the table size is large, the keys are not distribute well. e.g.
Suppose m=10007 and all the keys are eight or fewer characters
long. Since ASCII value <= 127, the hash function can only assume
values between 0 and 127 x 8 = 1016

(Hashing) Data Structures and Programming Spring 2017 10 / 27

Hash Function...

@ Method 2

|a,...,zand spacel |272|

int hash(const string & keyy int tableSize)
{

}

return (key[0] + 27 * key[1] + 729 * key[2 1) % tableSize;

» If the first 3 characters are random and the table size is 10,0007 =>
a reasonably equitable distribution
» Problem
* English is not random
* Only 28 percent of the table can actually be hashed to (assuming a
table size of 10,007)

@ Method 3

> Kg{KeySize—i - 1]*37

» Compute
» involves all characters in the key and be expected to distribute well

(Hashing) Data Structures and Programming

Collision Handling: (1) Separate Chaining

@ Instead of a hash table, we use a table of linked list
@ keep a linked list of keys that hash to the same value

o[HA-
1 1 PR o R o
2 clacd

3 T=

4 +— 64 4 [1=
s HB-

6 136 416 [4=
7 1

8 7

9 b e B

h(k) = k mod 10
Data Structures and Programming Spring 2017 12 /27

Separate Chaining

e Toinsert a key K
» Compute i(K) to determine which list to traverse
» If T[h(K)] contains a null pointer, initiatize this entry to point to a
linked list that contains K alone.
» If T[h(K)] is a non-empty list, we add K at the beginning of this list.
@ To delete a key K
» compute /1(K), then search for K within the list at T[h(K)]. Delete K
if it is found.

(Hashing) Data Structures and Programming Spring 2017 13 / 27

Separate Chaining

@ Assume that we will be storing n keys. Then we should make m
the next larger prime number. If the hash function works well, the
number of keys in each linked list will be a small constant.

@ Therefore, we expect that each search, insertion, and deletion can
be done in constant time.

o Disadvantage: Memory allocation in linked list manipulation will
slow down the program.

@ Advantage: deletion is easy.

(Hashing) Data Structures and Programming Spring 2017 14 / 27

Collision Handling: (2) Open Addressing

@ Open addressing;:
» relocate the key K to be inserted if it collides with an existing key.
That is, we store K at an entry different from T[h(K)].
@ Two issues arise
» what is the relocation scheme?
» how to search for K later?
@ Three common methods for resolving a collision in open
addressing
» Linear probing
» Quadratic probing
» Double hashing

(Hashing) Data Structures and Programming Spring 2017 15/ 27

Open Addressing

e To insert a key K, compute ho(K). If T[ho(K)] is empty, insert it
there. If collision occurs, probe alternative cell /11 (K), ha (K),
until an empty cell is found.

@ h;(K) = (hash(K) + f(i)) mod m, with f(0) =0
(f: collision resolution strategy)

(Hashing) Data Structures and Programming Spring 2017 16 / 27

Linear Probing

° fli)=1i
» cells are probed sequentially (with wraparound)
hi(K) = (hash(K) + i) mod m
@ Insertion
» Let K be the new key to be inserted. We compute hash(K)
» Fori=0tom—1
* compute L = (hash(K) + I) mod m
* TIL] is empty, then we put K there and stop.
» If we cannot find an empty entry to put K, it means that the table is
full and we should report an error.

(Hashing) Data Structures and Programming

Linear Probing

@ hi(K) = (hash(K) + i) mod m

e E.g, inserting keys 89, 18, 49, 58, 69 with hash(K) = K mod 10
» To insert 58, probe T[8], T[9], T[0], T[1]
» To insert 69, probe T[9], T[0], T[1], T[2]

Empty Table After 89 After 18 After 49 Afrer 58 After 69
0 49 49 49
1 58 58
2 69
3
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

(Hashing) Data Structures and Programming Spring 2017 18 / 27

Primary Clustering

@ We call a block of contiguously occupied table entries a cluster

@ On the average, when we insert a new key K, we may hit the
middle of a cluster. Therefore, the time to insert K would be
proportional to half the size of a cluster. That is, the larger the
cluster, the slower the performance.

@ Linear probing has the following disadvantages:

» Once h(K) falls into a cluster, this cluster will definitely grow in size
by one. Thus, this may worsen the performance of insertion in the
future.

» If two cluster are only separated by one entry, then inserting one
key into a cluster can merge the two clusters together. Thus, the
cluster size can increase drastically by a single insertion. This
means that the performance of insertion can deteriorate drastically
after a single insertion.

» Large clusters are easy targets for collisions.

(Hashing) Data Structures and Programming

Quadpratic Probing

° f(i) =7

@ ;(K) = (hash(K) + i?) mod m

e E.g., inserting keys 89, 18, 49, 58, 69 with hash(K) = K mod 10
» To insert 58, probe T[8], T[9], T[(8+4) mod 10]
» To insert 69, probe T[9], T[(9+1) mod 10], T[(9+4) mod 10]

Empty Table Afrer 89 After 18 Afrer 49 After 58 After 69
0 49 49 49
1
2 58 58
3 69
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

(Hashing) Data Structures and Programming Spring 2017

Quadpratic Probing

@ Two keys with different home positions will have different probe
sequences
» e.g. m=101, h(k1)=30, h(k2)=29
» probe sequence for k1: 30, 30+1, 30+4, 30+9
» probe sequence for k2: 29, 29+1, 29+4, 29+9

o If the table size is prime, then a new key can always be inserted if
the table is at least half empty (see proof in text book)

@ Secondary clustering
» Keys that hash to the same home position will probe the same
alternative cells
» Simulation results suggest that it generally causes less than an extra
half probe per search
» To avoid secondary clustering, the probe sequence need to be a
function of the original key value, not the home position

(Hashing) Data Structures and Programming Spring 2017 21/27

Double Hashing

e To alleviate the problem of clustering, the sequence of probes for a
key should be independent of its primary position => use two
hash functions: hash() and hash2()

@ f(i) = ixhash2(K)

» E.g. hash2(K) = R — (K mod R), with R is a prime smaller than m

(Hashing) Data Structures and Programming Spring 2017 22 /27

Double Hashing

@ h;(K) = (hash(K) + f (i)) mod m; hash(K) = K mod m

@ f(i) = ix*hash2(K); hash2(K) = R — (K mod R),

e Example: m=10, R = 7 and insert keys 89, 18, 49, 58, 69
» To insert 49, hash2(49)=7, 2nd probe is T[(9+7) mod 10]

» To insert 58, hash2(58)=5, 2nd probe is T[(8+5) mod 10]
» To insert 69, hash2(69)=1, 2nd probe is T[(9+1) mod 10]

Empty Table After 89 After 18 After 49 After 58 After 69

0 69
1
2
3 58 58
4
5
6 49 49 49
B
8 18 18 18 18
9 89 89 89 89 89

(Hashing) Data Structures and Programming Spring 2017

Choice of hash2()

@ Huash2() must never evaluate to zero

e For any key K, hash2(K) must be relatively prime to the table size
m. Otherwise, we will only be able to examine a fraction of the
table entries.

» E.g., if hash(K) = 0 and hash2(K) = m/2, then we can only examine
the entries T[0], T[m/2], and nothing else!

@ One solution is to make m prime, and choose R to be a prime
smaller than m, and set
hash2(K) = R — (K mod R)
@ Quadratic probing, however, does not require the use of a second
hash function
» likely to be simpler and faster in practice

(Hashing) Data Structures and Programming Spring 2017 24 /27

Deletion in open addressing

@ Actual deletion cannot be performed in open addressing hash
tables

» otherwise this will isolate records further down the probe sequence

@ Solution: Add an extra bit to each table entry, and mark a deleted
slot by storing a special value DELETED (tombstone)

(Hashing) Data Structures and Programming Spring 2017 25 /27

Data Structures and Programming

Data Structures and Programming

	Hashing

