Red-Black Trees and AA Trees

1 / 26

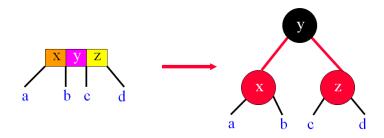
Binary Tree Representation Of 2-3-4 Trees

• Problems with 2-3-4 trees.

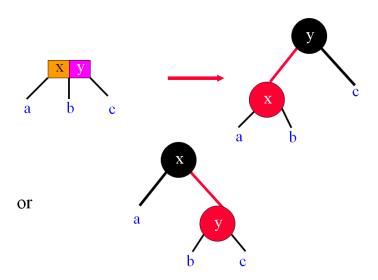
2-3-4 node structure

- 2- and 3-nodes waste space.
- Overhead of moving pairs and pointers when changing among 2-, 3-, and 4-node use.
- Represented as a binary tree for improved space and time performance.

Representation of a 4-node

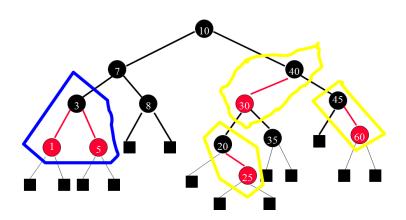


Representation of a 3-node



Representation of a 2-node

An Example



Properties of Binary Tree Representation

- Nodes and edges are colored.
 - ▶ The root is **black**.
 - Nonroot black node has a black edge from its parent.
 - Red node has a red edge from its parent.
- Can deduce edge color from node color and vice versa.
- Need to keep either edge or node colors, not both.

Red Black Trees

Colored Nodes Definition

- Binary search tree.
- Each node is colored red or black.
- Root and all external nodes are black.
- No root-to-external-node path has two consecutive red nodes.
- All root-to-external-node paths have the same number of black nodes
- The height of a red black tree that has n (internal) nodes is between $log_2(n+1)$ and $2log_2(n+1)$.
- C++ STL implementation
- java.util.TreeMap => red black tree

Red Black Trees

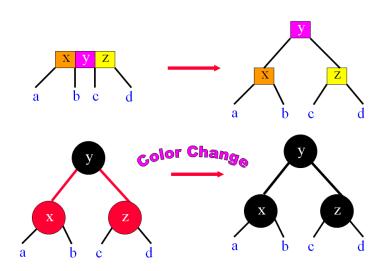
Colored Edges Definition

- Binary search tree.
- Child pointers are colored red or black.
- Pointer to an external node is black.
- No root to external node path has two consecutive red pointers.
- Every root to external node path has the same number of black pointers.

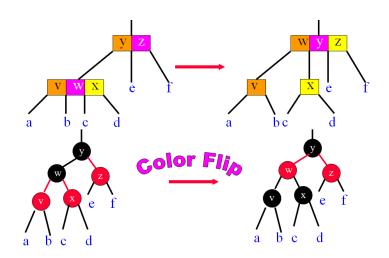
Top-Down Insert

- Mimic 2-3-4 top-down algorithm.
- Split 4-nodes on the way down.

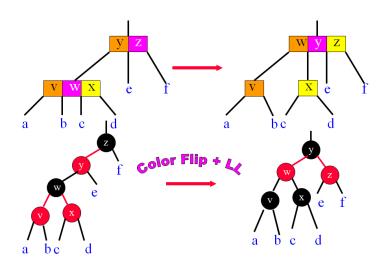
Root Is a 4-node



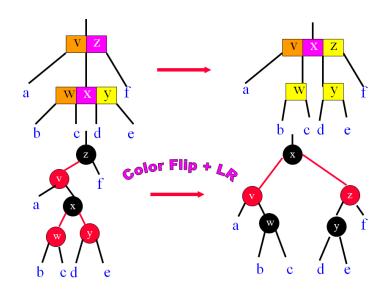
4-node Left Child of 3-node



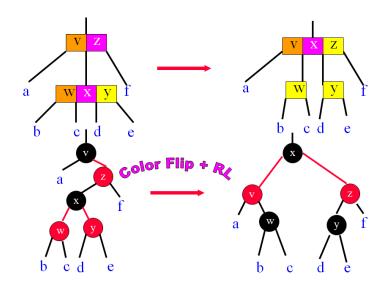
4-node Left Child of 3-node



4-node Middle Child of 3-node



4-node Middle Child of 3-node



4-node Right Child Of 3-node

- One orientation of 3-node requires color flip.
- Other orientation requires RR rotation.

AA Trees

- An AA tree satisfies the properties of Red-Black trees plus one more:
 - Every node is colored either red or black
 - ▶ The root is black
 - ▶ If a node is red, both of its children are black.
 - Every path from a node to a null reference has the same number of black nodes
 - Left children may NOT be red
- Invented by A. Andersson in 1993.

Advantage of AA Trees

- AA trees simplify the algorithms
 - It eliminates half the restructuring cases
 - It simplifies deletion by removing an annoying case
 - if an internal node has only one child, that child must be a red right child
 - We can always replace a node with the smallest child in the right subtree (it will either be a leaf or have a red child)

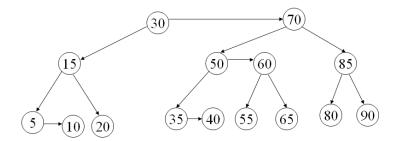
Representing the Balance information

- In each node we store a *level*. The level is defined by these rules
 - ▶ If a node is a leaf, its level is 1
 - If a node is red, its level is the level of its parent
 - ▶ If a node is black, its level is one less than the level of its parent
- The *level* is the number of left links to a null reference.

Links in an AA tree

- A horizontal link is a connection between a node and a child with equal levels
 - Horizontal links are right references
 - ▶ There cannot be two consecutive horizontal links
 - Nodes at level 2 or higher must have two children
 - If a node has no right horizontal link, its two children are at the same level

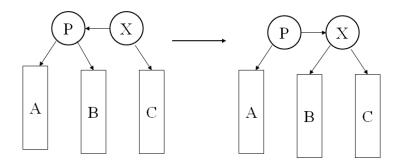
Example of an AA Tree



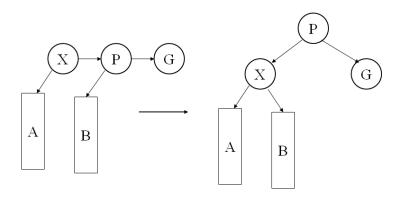
Insertion

- A new item is always inserted at the bottom level
- In the previous example, inserting 2 will create a horizontal left link
- In the previous example, inserting 45 generates consecutive right links
- After inserting at the bottom level, we may need to perform rotations to restore the horizontal link properties

skew - remove left horizontal links



split - remove consecutive horizontal links



skew/split

- A skew removes a left horizontal link
- A skew might create consecutive right horizontal links
- We should first process a skew and then a split, if necessary
- After a *split*, the middle node increases a level, which may create a problem for the original parent

An Example

