
Lists, Stacks, and Queues

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 1 / 50

Abstract Data Types (ADT)

Data type
I a set of objects + a set of operations
I Example: integer

F set of integer numbers
F operations: +, -, x, /

Can this be generalized? e.g. procedures generalize the notion of
an operator
Abstract data type

I what can be stored in the ADT
I what operations can be done on/by the ADT

Encapsulation
I Operations on ADT can only be done by calling appropriate

functions
I no mention of how the set of operations is implemented
I ADT→ C++: class
I method→ C++: member function

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 2 / 50

Abstract Data Types (Cont’d)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 3 / 50

Object-Oriented Design

A technique for developing a program in which the solution is
expressed in terms of objects – self- contained entities composed of
data and operations on that data.

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 4 / 50

More about OOD

Languages supporting OOD include: C++, Java, Smalltalk, Eiffel,
and Object-Pascal.
A class is a programmer-defined data type and objects are
variables of that type.
In C++, cin is an object of a data type (class) named istream, and
cout is an object of a class ostream. Header files iostream.h and
fstream.h contain definitions of stream classes.

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 5 / 50

Client Code Using DateType

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 6 / 50

2 Separate Files Generally Used for Class Type

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 7 / 50

DateType Class Instance Diagrams

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 8 / 50

Implementation of DateType member functions

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 9 / 50

Implementation of DateType member functions
(Cont’d)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 10 / 50

The List ADT

A sequence of zero or more elements:

A1,A2,A3, · · · ,AN

N: length of the list
A1: first element
AN: last element
If N = 0, then empty list

I Ai precedes Ai+1
I Ai follows Ai−1

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 11 / 50

List Operations

printList: print the list
makeEmpty: create an empty list
find: locate the position of an object in a list

I list: 34,12, 52, 16, 12
I find(52)→ 3

insert: insert an object to a list
I insert(x,3)→ 34, 12, 52, x, 16, 12

remove: delete an element from the list
I remove(52)→ 34, 12, x, 16, 12

findKth: retrieve the element at a certain position

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 12 / 50

Implementation of an ADT

Choose a data structure to represent the ADT. E.g. arrays, records,
etc.
Each operation associated with the ADT is implemented by one or
more subroutines
Two standard implementations for the list ADT

I Array-based
I Linked list

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 13 / 50

Array Implementation

Requires an estimate of the maximum size of the list – waste space
printList and find: linear
findKth: constant
insert and delete: slow

I e.g. insert at position 0 (making a new element) requires first
pushing the entire array down one spot to make room

I e.g. delete at position 0 requires shifting all the elements in the list
up one

I On average, half of the lists needs to be moved for either operation

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 14 / 50

Pointer Implementation (Linked List)

The list is not stored contiguously
A series of structures that are not necessarily adjacent
Each node contains the element and a pointer to a structure
containing its successor; the last cells next link points to NULL
Compared to the array implementation,

I
√

the pointer implementation uses only as much space as is needed
for the elements currently on the list

I × but requires space for the pointers in each cell

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 15 / 50

Linked Lists

A linked list is a series of connected nodes
Each node contains at least

I A piece of data (any type)
I Pointer to the next node in the list

Head: pointer to the first node
The last node points to NULL

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 16 / 50

A Simple Linked List Class

Declare Node class for the nodes

Declare List, which contains
I head: a pointer to the first node in the list.
I Since the list is empty initially, head is set to NULL Operations on

List

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 17 / 50

Inserting a New Node

Node* InsertNode(int index, double x)
I Insert a node with data equal to x after the index’th elements.

(i.e., when index = 0, insert the node as the first element; when
index = 1, insert the node after the first element, and so on)

I If the insertion is successful, return the inserted node. Otherwise,
return NULL.
(If index is < 0 or > length of the list, the insertion will fail.)

Steps
I Locate index’th element
I Allocate memory for the new node
I Point the new node to its successor
I Point the new nodes predecessor to the new node

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 18 / 50

Inserting a New Node (Cont’d)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 19 / 50

Inserting a New Node (Cont’d)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 20 / 50

Inserting a New Node (Cont’d)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 21 / 50

Inserting a New Node (Cont’d)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 22 / 50

Deleting a Node

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 23 / 50

Deleting a Node (Cont’d)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 24 / 50

Destroying the list

∼List(void)
I Use the destructor to release all the memory used by the list.
I Step through the list and delete each node one by one.

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 25 / 50

Variations of Linked Lists

Circular linked lists
I The last node points to the first node of the list
I How do we know when we have finished traversing the list? (Tip:

check if the pointer of the current node is equal to the head.)

Doubly linked lists
I Each node points to not only successor but the predecessor
I There are two NULL: at the first and last nodes in the list
I Advantage: given a node, it is easy to visit its predecessor.

Convenient to traverse lists backwards

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 26 / 50

Doubly-Linked List

insert(X, A): insert node A before X

remove(X)

Problems with operations at ends of list

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 27 / 50

Sentinel Nodes

Dummy head and tail nodes to avoid special cases at ends of list
Doubly-linked list with sentinel nodes

Empty doubly-linked list with sentinel nodes

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 28 / 50

Link Inversion

Forward:
· · · A → B → C → D · · ·
⇑ ↑

prev pres

· · · ← A B → C → D · · ·
⇑ ↑

· · · ← A ← B C → D · · ·
⇑ ↑

Backward ...

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 29 / 50

Exclusive-Or Doubly Linked List

An XOR linked list compresses the same information into one
address field by storing the bitwise XOR (here denoted by

⊕
) of

the address for previous and the address for next in one field
Addr · · · A B C D E · · ·
Link ↔ A

⊕
C ↔ B

⊕
D ↔ C

⊕
E

More formally:
link(B) = addr(A)

⊕
addr(C), link(C) = addr(B)

⊕
addr(D), ...

Note: X
⊕

X = 0 X
⊕

0 = X X
⊕

Y = Y
⊕

X
(X
⊕

Y)
⊕

Z = X
⊕

(Y
⊕

Z)

Move forward:
at C, take addr(B), XOR it with C’s link value (i.e., B

⊕
D), yields

addr(D), and you can continue traversing the list.
Move backward: Similar

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 30 / 50

C++ Standard Template Library (STL)

Implementation of common data structures
I Available in C++ library, known as Standard Template Library

(STL)
I List, stack, queue,
I Generally these data structures are called containers or collections

WWW resources
I www.sgi.com/tech/stl
I www.cppreference.com/cppstl.html

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 31 / 50

Lists Using STL

Two popular implementation of the List ADT
I The vector provides a growable array implementation of the List

ADT
F Advantage: it is indexable in constant time
F Disadvantage: insertion and deletion are computationally expensive

I The list provides a doubly linked list implementation of the List
ADT

F Advantage: insertion and deletion are cheap provided that the
position of the changes are known

F Disadvantage: list is not easily indexable

Vector and list are class templates
I Can be instantiated with different type of items

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 32 / 50

Iterators

Insert and remove from the middle of the list
I Require the notion of a position
I In STL a position is represented by a nested type, iterator
I Example: list <string>:: iterator; vector<int>:: iterator

Iterator: Represents position in the container
Three Issues:

I How one gets an Iterator?
I What operations the iterators themselves can perform?
I Which LIST ADT methods require iterators as parameters?

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 33 / 50

Example: The Polynomial ADT

An ADT for single-variable polynomials

f (x) =
N∑

i=0

aixi

Array implementation

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 34 / 50

The Polynomial ADT

Multiplying two polynomials

P1(x) = 10x1000 + 5x14 + 1

P2(x) = 3x1990 − 2x1492 + 11x + 5

Implementation using a singly linked list

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 35 / 50

Stack ADT

Stack is a list where insert and remove take place only at the top
Operations: Constant time

I Push - inserts element on top of stack
I Pop - removes element from top of stack
I Top - returns element at top of stack
I Empty, size

LIFO (Last In First Out)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 36 / 50

Stack Implementation

Singly Linked List
I Push - inserts the element at the front of the list
I Pop - deletes the element at the front of the list
I Top - returns the element at the front of the list

Array
I Back, push back, pop back implementation from vector
I theArray and topOfStack which is -1 for an empty stack
I Push - increment topOfStack and then set theArray[topOfStack] = x
I Pop - return the value to theArray[topOfStack] and then decrement

topOfStack

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 37 / 50

Stack Implementation (cont’d)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 38 / 50

Applications of Stack

Balancing symbols
I Compiler checks for program syntax errors
I Every right brace, bracket, and parenthesis must correspond to its

left counterpart
I The sequence [()] is legal, but [(]) is wrong

Postfix Expressions
Infix to Postfix Conversion
Function calls

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 39 / 50

Balancing Symbols

Balancing symbols: ((()())(()))

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 40 / 50

Evaluation of Postfix Expressions

Infix expression: ((1 * 2) + 3) + (4 * 5)
Postfix expression: 1 2 * 3 + 4 5 * +

I Unambiguous (no need for parenthesis)
I Infix needs parenthesis or else implicit precedence specification to

avoid ambiguity
E.g. ”a + b * c” can be ”(a + b) * c” or ”a + (b * c)”

I Postfix expression evaluation uses stack
I E.g. Evaluate 1 2 * 3 + 4 5 * +

Rule of postfix expression evaluation
I When a number/operand is seen push it onto the stack
I When a operator is seen, the operator is applied to the two

numbers (symbols) that are popped from the stack, and
I Result is pushed onto the stack

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 41 / 50

Infix to Postfix Conversion

When an operand is read, place it onto the output
Operators are not immediately output, so save them somewhere
else which is stack
If a left parenthesis is encountered, stack it
Start with an initially empty stack
If we see a right parenthesis, pop the stack, writing symbols until
we encounter a left parenthesis which is popped but not output
If we see any other symbols, then we pop the entries from the
stack until we find an entry of lower priority. One exception is we
never remove a ”(” from the stack except when processing a ”)”
Finally, if we read the end of input, pop the stack until it is empty,
writing symbols onto the output

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 42 / 50

Infix to Postfix Conversion (Cont’d)

Infix: a + b * c + (d * e + f) * g
Postfix: a b c * + d e * f + g * +

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 43 / 50

Applications of Stack: Function Calls

Programming languages use stack to keep track of function calls
When a function call occurs

I Push CPU registers and program counter on to stack (activation
record or stack frame)

I Upon return, restore registers and program counter from top stack
frame and pop

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 44 / 50

Queue ADT

Queue is a list where insert takes place at the back, but remove
takes place at the front
Operations

I Enqueue - inserts element at the back of queue
I Dequeue - removes and returns element from the front of the queue

FIFO (First In First Out)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 45 / 50

Queue Implementation of Array

When an item is enqueued, make the rear index move forward.
When an item is dequeued, the front index moves by one element
towards the back of the queue (thus removing the front item, so
no copying to neighboring elements is needed).
(front) XXXXOOOOO (rear)

OXXXXOOOO (after 1 dequeue, and 1 enqueue)
OOXXXXXOO after another dequeue, and 2 enqueues)
OOOOXXXXX (after 2 more dequeues, and 2 enqueues)

The problem here is that the rear index cannot move beyond the
last element in the array.
Using a circular array

I OOOOO7963→ 4OOOO7963 (after Enqueue(4))

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 46 / 50

Empty or Full?

Empty queue:
I back = front - 1

Full queue?
I the same!
I Reason: n values to represent n + 1 states

Solutions
I Use a boolean variable to say explicitly whether the queue is empty

or not
I Make the array of size n+1 and only allow n elements to be stored
I Use a counter of the number of elements in the queue

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 47 / 50

Queue Implementation based on Linked List

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 48 / 50

Queue Implementation based on Linked List (Cont’d)

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 49 / 50

Applications of Queue

Job scheduling, e.g., Jobs submitted to a line printer
Customer service calls are generally placed on a queue when all
operators are busy
Priority queues
Graph traversals
Queuing theory

(Lists, Stacks, and Queues) Data Structures and Programming Spring 2017 50 / 50

	Lists, Stacks, and Queues

