
Algorithm Analysis

(Algorithm Analysis) Data Structures and Programming Spring 2017 1 / 43

What is an Algorithm?

An algorithm is a clearly specified set of instructions to be
followed to solve a problem

I Solves a problem but requires a year is hardly of any use
I Requires several terabytes of main memory is not useful on most

machines
Problem

I Specifies the desired input-output relationship
Correct algorithm

I Produces the correct output for every possible input in finite time
(i.e., must terminate eventually)

I Solves the problem (i.e., must be correct)
Why bother analyzing algorithm or code; isn’t getting it to work
enough?

I Estimate time and memory in the average case and worst case
I Identify bottlenecks, i.e., where to reduce time and space
I Speed up critical algorithms or make them more efficient

(Algorithm Analysis) Data Structures and Programming Spring 2017 2 / 43

Algorithm Analysis

Predict resource utilization of an algorithm
I Running time
I Memory usage

Dependent on architecture: Serial, Parallel, Quantum, Molecular,
...
Our main focus is on running time

I Memory/time tradeoff
I Memory is cheap

Our assumption: simple serial computing model

(Algorithm Analysis) Data Structures and Programming Spring 2017 3 / 43

What to Analyze (cont’d)

Let T(N) be the running time, where N (sometimes n) is typically
the size of the input

I Linear or binary search?
I Sorting?
I Multiplying two integers?
I Multiplying two matrices?
I Traversing a graph?

T(N) measures number of primitive operations performed
I E.g., addition, multiplication, comparison, assignment

Running Time Calculations
I The declarations count for no time
I Simple operations (e.g. +, *, <=, =) count for one unit each
I Return statement counts for one unit

(Algorithm Analysis) Data Structures and Programming Spring 2017 4 / 43

Example

T(N) = 6N+4

(Algorithm Analysis) Data Structures and Programming Spring 2017 5 / 43

Running Time Calculations

General rules

Rule 1 - Loops
I The running time of a loop is at most the running time of the

statements inside the loop (including tests) times the number of
iterations of the loop

Rule 2 - Nested loops
I Analyze these inside out
I The total running time of a statement inside a group of nested

loops is the running time of the statement multiplied by the
product of the sizes of all the loops
⇓

Number of iterations

(Algorithm Analysis) Data Structures and Programming Spring 2017 6 / 43

Running Time Calculations (cont’d)

Rule 1 - Loops

Rule 2 - Nested loops

(Algorithm Analysis) Data Structures and Programming Spring 2017 7 / 43

Running Time Calculations (cont’d)

General rules

Rule 3 - Consecutive statements
I These just add
I Only the maximum is the one that counts

Rule 4 - Conditional statements (e.g. if/else)
I The running time of a conditional statement is never more than the

running time of the test plus the largest of the running times of the
various blocks of conditionally executed statements

Rule 5 - Function calls
I These must be analyzed first

(Algorithm Analysis) Data Structures and Programming Spring 2017 8 / 43

Running Time Calculations (cont’d)

Rule 3 - Consecutive statements

Rule 4 - Conditional statements

(Algorithm Analysis) Data Structures and Programming Spring 2017 9 / 43

Average and Worst-Case Running Times

Estimating the resource use of an algorithm is generally a
theoretical framework and therefore a formal framework is
required
Define some mathematical definitions
Average-case running time Tavg(N)

Worst-case running time Tworst(N)

Tavg(N) ≤ Tworst(N)

Average-case performance often reflects typical behavior of an
algorithm
Worst-case performance represents a guarantee for performance
on any possible input
Typically, we analyze worst-case performance

I Worst-case provides a guaranteed upper bound for all input
I Average-case is usually much more difficult to compute
I Best-case ?

(Algorithm Analysis) Data Structures and Programming Spring 2017 10 / 43

Asymptotic Analysis of Algorithms

We are mostly interested in the performance or behavior of
algorithms for very large input (i.e., as N →∞)

I For example, let T(N) = 10, 000 + 10N be the running time of an
algorithm that processes N transactions

I As N grows large (N →∞), the term 10N will dominate
I Therefore, the smaller looking term 10N is more important if N is

large
Asymptotic efficiency of the algorithms

I How the running time of an algorithm increases with the size of the
input in the limit, as the size of the input increases without bound

(Algorithm Analysis) Data Structures and Programming Spring 2017 11 / 43

Asymptotic Analysis of Algorithms (cont’d)

(Algorithm Analysis) Data Structures and Programming Spring 2017 12 / 43

Asymptotic Analysis of Algorithms (cont’d)

Asymptotic behavior of T(N) as N gets big
Exact expression for T(N) is meaningless and hard to compare
Usually expressed as fastest growing term in T(N), dropping
constant coefficients

I For example, T(N) = 3N2 + 5N + 1
I Therefore, the term N2 describes the behavior of T(N) as N gets big

(Algorithm Analysis) Data Structures and Programming Spring 2017 13 / 43

Asymptotic Analysis of Algorithms (cont’d)

Let T(N) be the running time of an algorithm
Let f (N) be another function (preferably simple) that we will use
as a bound for T(N)
Asymptotic notations

I Big-Oh notation O()
I Big-Omega notation Ω()
I Big-Theta notation Θ()
I Little-oh notation o()
I Little-omega notation ω()

(Algorithm Analysis) Data Structures and Programming Spring 2017 14 / 43

Big-Oh Notation

O(f (N)) is the SET of ALL functions T(N) that satisfy: There exist
positive constants c and n0 such that, for all N ≥ n0, T(N) ≤ cf (N)

Examples
I 1, 000, 000N = O(N)

F Proof: Choose c = 1, 000, 000 and n0 = 1
I N = O(N3)

F Proof: Choose c = 1 and n0 = 1
I N3 + N2 + N = O(N3)

F Proof: Choose c = 3 and n0 = 1

NOTE:
I Thus, big-oh notation doesn’t care about (most) constant factors. It

is unnecessary to write O(2N). We can just simply write O(N)
I Big-Oh is an upper bound

(Algorithm Analysis) Data Structures and Programming Spring 2017 15 / 43

Big-Oh Notation (cont’d)

g(N) is asymptotically upper bounded by f (N)

(Algorithm Analysis) Data Structures and Programming Spring 2017 16 / 43

Big-Omega Notation

Definition: T(N) = Ω(g(N)) if there are positive constants c and n0
such that T(N) ≥ cg(N) when N ≥ n0

Asymptotic lower bound
The growth rate of T(N) is ≥ that of g(N)

Examples
I N3 = Ω(N2) (Proof: c =?,n0 =?)
I N3 = Ω(N) (Proof: c = 1,n0 = 1)

(Algorithm Analysis) Data Structures and Programming Spring 2017 17 / 43

Big-Omega Notation (cont’d)

g(N) is asymptotically lower bounded by f (N)

(Algorithm Analysis) Data Structures and Programming Spring 2017 18 / 43

Big-Theta Notation

Definition: T(N) = Θ(h(N)) if and only if T(N) = O(h(N)) and
T(N) = Ω(h(N))

Asymptotic tight bound
The growth rate of T(N) equals the growth rate of h(N)

Examples
I 2N2 = Θ(N2)
I Suppose T(N) = 2N2 then T(N) = O(N4); T(N) = O(N3);

T(N) = O(N2) all are technically correct, but last one is the best
answer. Now writing T(N) = Θ(N2) says not only that
T(N) = O(N2), but also the result is as good (tight) as possible

(Algorithm Analysis) Data Structures and Programming Spring 2017 19 / 43

Big-Theta Notation (cont’d)

g(N) is asymptotically equal to f (N)

(Algorithm Analysis) Data Structures and Programming Spring 2017 20 / 43

Little-oh Notation

Definition: T(N) = o(g(N)) if for all constants c there exists an n0
such that T(N) < cg(N) when N > n0

I That is, T(N) = o(g(N)) if T(N) = O(g(N)) and T(N) 6= Θ(g(N))
I The growth rate of T(N) less than (<) the growth rate of g(N)
I Denote an upper bound that is not asymptotically tight

The definition of O-notation and o-notation are similar
I The main difference is that in T(N) = O(g(N)), the bound

0 ≤ T(N) ≤ cg(N) holds for some constant c > 0, but in
T(N) = o(g(N)), the bound 0 ≤ T(N) < cg(N) holds for all
constants c > 0

I For example , N = o(N2), but 2N2 6= o(N2)

(Algorithm Analysis) Data Structures and Programming Spring 2017 21 / 43

The O(), Ω(), Θ() Notations

O-notation gives an upper bound for a function to within a
constant factor
Ω-notation gives an lower bound for a function to within a
constant factor
Θ-notation bounds a function to within a constant factor

I The value of f (n) always lies between c1g(n) and c2g(n) inclusive

(Algorithm Analysis) Data Structures and Programming Spring 2017 22 / 43

Some Rules

Rule 1: If T1(N) = O(f (N)) and T2(N) = O(g(N)), then
I T1(N) + T2(N) = O(f (N) + g(N)) less formally it is

max{O(f (N)),O(g(N))}
I T1(N) ∗ T2(N) = O(f (N) ∗ g(N))

Rule 2:If T(N) is a polynomial of degree k, then T(N) = Θ(Nk)

Rule 3: logkN = O(N) for any constant k
Rule 4: logaN = Θ(logbN) for any constants a and b

(Algorithm Analysis) Data Structures and Programming Spring 2017 23 / 43

Rate of Growth

(Algorithm Analysis) Data Structures and Programming Spring 2017 24 / 43

Maximum Subsequence Sum Problem

Given (possibly negative) integers A1,A2, · · · ,AN, find the
maximum value (≥ 0) of:

j∑
k=i

Ak

We don’t need the actual sequence (i, j), just the sum
If the final sum is negative, the maximum sum is 0
E.g. < 1,−4, 4, 2,−3, 5, 8,−2 >, the MaxSubSum is 16.

(Algorithm Analysis) Data Structures and Programming Spring 2017 25 / 43

Solution 1 of MaxSubSum

Idea: Compute the sum for all possible subsequence ranges (i, j)
and pick the maximum sum

(Algorithm Analysis) Data Structures and Programming Spring 2017 26 / 43

Solution 2 of MaxSubSum

Observation
j∑

k=i

Ak = Aj +

j−1∑
k=i

Ak

So, we can re-use the sum from previous range

(Algorithm Analysis) Data Structures and Programming Spring 2017 27 / 43

Solution 3 of MaxSubSum

Idea: Recursive, divide and conquer
I Divide sequence in half: A1..center and A(center+1)..N
I Recursively compute MaxSubSum of left half
I Recursively compute MaxSubSum of right half
I Compute MaxSubSum of sequence constrained to use Acenter and

A(center+1)
I Example

(Algorithm Analysis) Data Structures and Programming Spring 2017 28 / 43

Solution 3 of MaxSubSum (cont’d)

4, -3, 5, -2 || -1, 2, 6,-4, where ||marks the half-way point
I The maximum subsequence sum of the left half is 6: 4 + -3 + 5.
I The maximum subsequence sum of the right half is 8: 2 + 6.
I The maximum subsequence sum of sequences having -2 as the

right edge is 4: 4 + -3 + 5 + -2; and the maximum subsequence sum
of sequences having -1 as the left edge is 7: -1 + 2 + 6.

I Comparing 6, 8 and 11 (4 + 7), the maximum subsequence sum is 11
where the subsequence spans both halves: 4 + -3 + 5 + -2 + -1 + 2 +
6.

(Algorithm Analysis) Data Structures and Programming Spring 2017 29 / 43

Solution 3 of MaxSubSum (cont’d)

Analysis:
T(1) = O(1), T(N) = 2T(N/2) + O(N)

T(N) = O(N log2 N) – will be derived later in the class

(Algorithm Analysis) Data Structures and Programming Spring 2017 30 / 43

Solution 4 of MaxSubSum

Observations
Any negative subsequence cannot be a prefix to the maximum
subsequence
Or, only a positive, contiguous subsequence is worth adding
Example: < 1,−4, 4, 2,−3, 5, 8,−2 >

(Algorithm Analysis) Data Structures and Programming Spring 2017 31 / 43

MaxSubSum Running Times

(Algorithm Analysis) Data Structures and Programming Spring 2017 32 / 43

Logarithmic Behavior

T(N) = O(log2N)

An algorithm is O(log2N) if it takes constant O(1) time to cut the
problem size by a fraction (which is usually 1/2)
Usually occurs when

I Problem can be halved in constant time
I Solutions to sub-problems combined in constant time

Examples
I Binary search
I Euclid’s algorithm
I Exponentiation

(Algorithm Analysis) Data Structures and Programming Spring 2017 33 / 43

Euclid’s Algorithm

Compute the greatest common divisor gcd(M,N) between the integers
M and N; e.g., gcd(50, 15) = 5

(Algorithm Analysis) Data Structures and Programming Spring 2017 34 / 43

Euclid’s Algorithm

Estimating the running time: how long the sequence of
remainders is?

I logN is a good answer, but value of the remainder does not
decrease by a constant factor

I Indeed the remainder does not decrease by a constant factor in one
iteration, however we can prove that after two iterations the
remainder is at most half of its original value

F Theorem 2.1: If M > N, then M mod N < M/2
I Number of iterations is at most 2logN = O(logN)

T(N) = 2log2N = O(log2N); T(225) = 16
Better worst-case: T(N) = 1.44log2N; T(225) = 11
Average-case: T(N) = (12 ln 2 ln N)/π2 + 1.47; T(225) = 6

(Algorithm Analysis) Data Structures and Programming Spring 2017 35 / 43

Exponentiation

Compute XN =

N︷ ︸︸ ︷
X ∗ X ∗ · · · ∗ X, for integer N ≥ 0

Obvious algorithm: To compute XN uses (N − 1) multiplications
Observations

I A recursive algorithm can do better
I N ≤ 1 is the base case
I XN = XN/2 ∗ XN/2 (for even N)
I XN = X(N−1)/2 ∗ X(N−1)/2 ∗ X (for odd N)

E.g., X3 = (X2) · X; X7 = (X3)2 · X; X15 = (X7)2 · X;
X31 = (X15)2 · X; X62 = (X31)2

Minimize number of multiplications
T(N) = 2log2N = O(log2N)

(Algorithm Analysis) Data Structures and Programming Spring 2017 36 / 43

Complexity of an Algorithm

Best case analysis: too optimistic, not really useful.
Worst case analysis: usually only yield a rough upper bound.
Average case analysis: a probability distribution of input is
assumed, and the average of the cost of all possible input patterns
are calculated. However, it is usually difficult than worst case
analysis and does not reflect the behavior of some specific data
patterns.
Amortized analysis: this is similar to average case analysis except
that no probability distribution is assumed and it is applicable to
any input pattern (worst case result).
Competitive analysis: Used to measure the performance of an
on-line algorithm w.r.t. an adversary or an optimal off-line
algorithm.

(Algorithm Analysis) Data Structures and Programming Spring 2017 37 / 43

Amortized analysis

Given a stack S with 2 operations: push(S, x), and multipop(S, k),
the cost of the two operations are 1 and min(k, |S|) respectively.
What is the cost of a sequence of n operations on an initially
empty stack S?

I Best case: n, 1 for each operation.
I Worst case: O(n2),O(n) for each operation.
I Average case: complicate and difficult to analyze.
I Amortized analysis: 2n, 2 for each operation. (There are at most n

push operations and hence at most n items popped out of the
stack.)

(Algorithm Analysis) Data Structures and Programming Spring 2017 38 / 43

The Difficulty of a Problem

Upper bound O(f (n)) means that for sufficiently large inputs,
running time T(n) is bounded by a multiple of f (n)

Existing algorithms (upper bounds).
Lower bound Ω(f (n)) means that for sufficiently large n, there is at
least one input of size n such that running time is at least a
fraction of f (n) for any algorithm that solves the problem.
The inherent difficulty⇒ lower bound of algorithms
The lower bound of a method to solve a problem is not necessary
the lower bound of the problem.

(Algorithm Analysis) Data Structures and Programming Spring 2017 39 / 43

The Difficulty of a Problem (cont’d)

(Algorithm Analysis) Data Structures and Programming Spring 2017 40 / 43

Examples

Sorting n elements into ascending order.
I O(n2),O(n log n), etc. – Upper bounds.
I O(n),O(n log n), etc. – Lower bounds.
I Lower bound matches upper bound.

Lower bound matches upper bound.
Multiplication of 2 matrices of size n by n.

I Straightforward algorithm: O(n3).
I Strassen’s algorithm: O(n2.81).
I Best known sequential algorithm: O(n2.376).
I Best known lower bound: Ω(n2).
I The best algorithm for this problem is still open.

(Algorithm Analysis) Data Structures and Programming Spring 2017 41 / 43

Complexity of Algorithms and Problems

(Algorithm Analysis) Data Structures and Programming Spring 2017 42 / 43

Formal Definitions

(Algorithm Analysis) Data Structures and Programming Spring 2017 43 / 43

	Algorithm Analysis

