
Data Structures and Programming
Final Exam (June 21, 2010)

1. (16 pts) Insert the following sequence 5 4 3 2 1 6 7 8 9 into an initially empty
(a) top-down Red-Black Tree, and (b) AA-tree. Show all the intermediate steps in sufficient
detail. For red-black trees, you can draw red nodes as squares and black nodes as circles.
Solution

2. (15 pts)

(a) (5 pts) In a Fibonacci heap, a node is marked if it looses one of its children. Consider the node
x and its children y1, ..., y5 in the portion of the Fibonacci heap shown in Figure 1-(1). Assume
that x has never lost any children and that y1 was the first to become a child of x, followed by
y2, y3 and so forth. Which children of x must have a mark bit that is set? Explain your answer.
Solution: y3 and y5 must both have a mark bit that is set. When each yi became a child of x, it
had to have had iV 1 children. Nodes y2 and y4 still have all of their children, but y3 and y5 both
have one fewer than the number they must have had when they became children of x. Therefore,
their mark bits must be set.

(b) In the Fibonacci heap shown in Figure 1-(2), the numbers are the key values, and
√

indicates a
marked node.
(1) (4 pts) What is the potential value (based on the potential function discussed in class) of the
heap? Why?
Solution 6+2*4=14
(2) (6 pts) Show the heap that results from performing a delete-min on the heap. Draw the
resulting heap, and show all the marked node.

Solution

3. (10 pts) Consider the priority queue represented by the leftist tree shown in Figure 2. Show the
modified tree under each of the following operations: (a) Insertion of the key 7. (b) Deletion
of the minimum key. Show your derivation in sufficient detail. (Note: The two operations are
independent. Each of them starts from the original tree.)

4. (10 pts) Let the height of a tree be the number of nodes in the longest path from the root to the leaves.
For each of the following types of trees, determine the minimum number of nodes a tree of height 4
can have. (1) Binary heaps (2) Leftist trees (3) (Standard) binary search trees (4) AVL

1



Figure 1: (1) Portion of a Fibonacci heap; (2) A Fibonacci heap

Figure 2: A leftist heap

trees (5) Red-black trees
Solution: (1) 8. (2) 4. (3) 4. (4) 7. (5) 6.

5. (15 pts) Consider the union/find problem in which the union-by-size strategy is applied. Suppose we
initialize our sets so that each integer between 1 and 8 (inclusive) is contained within its own set.

(a) (5 pts) Give a sequence of seven unions that produces a tree whose height is as large as possible.
Your answer should be a sequence of procedure calls of the form union(a, b) where a and b are
integers between 1 and 8. Draw the resulting tree.
Solution: There are lots of possible sequences that would work here. One of them is: U(1,2),

2



U(3,4), U(5,6), U(7,8), U(1,3), U(5,7), U(1,5).

(b) (5 pts) Give a sequence of seven unions, on the original eight sets, that produces a tree of minimum
height. Draw the resulting tree.
Solution: Again, there are many correct answers. Here’s one: U(1,2), U(1,3), U(1,4), U(1,5),
U(1,6), U(1,7), U(1,8).

(c) (5 pts) We know that a sequence of m union/find operations on n singleton sets using union-
by-size and path compression takes time O(m · α(m,n)) where α(m,n) grows extremely slowly.
Suppose all the union operations are done first. What is the complexity of a sequence of n unions
followed by m finds? Give a convincing argument.

Solution: It takes time O(n+m). First recall that each Union operation takes time O(1); thus,
all we have to show is that not too much time is spent on Finds. Observe that each edge of a tree
has to be created by a Union operation; thus, the total number of tree edges is O(n). Suppose
we want to count only edges that are deep in a tree, i.e., just those edges that are not edges from
the root. There are O(n) such deep edges.

A Find operation on item i is slow only when i is deep in a tree; then it takes time proportional
to the depth of i. The Find operation also converts a bunch of deep edges into root edges. As a
matter of fact, the Find operation takes time proportional to a constant plus the number of deep
edges converted to root edges. Since there aren’t very many deep edges (just O(n) of them), the
total time spent on Find operations is at most O((number of Find operations)+(number of edges
converted from deep edges to root edges)) or O(m+n).

6. (8 pts) A ternary counter is a string of k ”trits” tk−1...t0 each of which can be 0, 1, or 2. As with a
binary counter, we can perform the operation INCREMENT on a ternary counter. If we start with
every trit equal to 0, then after n INCREMENTs, the counter holds the number n written in base 3.
For example, k = 4 and n = 6 is shown in Figure 3. The cost of each INCREMENT is the number of
trits that change. Suppose we start from all 0’s and perform n INCREMENTs, what is the worst-case
total cost of the n operations? What is the amortized complexity of an INCREMENT? Explain why.
Solutio: Let WCSC(n) be the worst case complexity of performing n INCREMENTS.

3



Figure 3: A ternary counter; Figure 4: A max-binomial heap.

7. (14 pts) Consider the max-binomial heap B shown in Figure 4.

(a) (7 pts) Insert keys 6, 11, 24 into B in the given order, and show the resulting binomial heap.

(b) (7 pts) Perform the delete-max operation from the original binomial heap B and show the resulting
binomial heap.

8. (12 pts) For each of the following questions, pick an answer from one of the following Θ(1), Θ(log∗ n),
Θ(log2 n), Θ(n), Θ(n log n), Θ(n2), Θ(n log∗ n) :

(a) Worst-case complexity of the decrease-key operation of a min-Fibonacci heap of n nodes.
Solution: Θ(n)

(b) The maximum height of a leftist heap of n nodes.
Solution: Θ(n)

(c) Worst-case complexity of n union-find operations if union-by-size is applied but path compression
is not used.
Solution: Θ(n log n)

(d) Worst-case complexity of the union operation of a Fibonacci heap of n nodes.
Solution: Θ(1)

(e) The maximum number of rotations needed to rebalance a bottom-up red-black tree of n nodes
after an insertion is carried out.
Solution: Θ(1)

(f) The worst-case complexity of the delete-min operation of a min-leftist heap of n nodes.
Solution: Θ(log2 n)

4


