
Data Structures and Programming
Spring 2015, Final Exam. Solutions

Date: June 23, 2015

〈 1 〉 (10 pts) Imagine that the following operations are performed on an initially empty (two-pass) splay tree:
Insert(1), Insert(10), Insert (5), Insert (3), Insert (7), Insert (13), Find (3).
Show the state of the splay tree after performing each of the above operations. Be sure to label each of your
trees with what operations you have just completed.
Solution

〈 2 〉 (10 pts) Suppose that r is a root of some tree in a Fibonacci heap. Recall that the rank of a node is the
number of children of the node. Assume that just before a deletemin operation, r has no children (i.e.,
rank(r)=0) and that after the deletemin r has 10 children (i.e., rank(r)=10). Let C be the set of children
of r after the deletemin and let ranks(C) be the set of rank values for the nodes in C (since this is a set, if
several nodes in C have the same rank, their rank value appears just once in ranks(C)). (For example, if r
has 5 children of ranks 1, 2, 2, 5, 5, then |ranks(C)| = 3, max ranks(C) is 5.)

(a) What is the largest value in ranks(C) (i.e., max ranks(C)) right after the deletemin?
Sol. 9 Remark: The tree with root r is the result of merging two trees of rank 9.

(b) What is the value of |ranks(C)| (i.e., the number of elements in set ranks(C)) right after the deletemin?
Sol. 10 Remark: Before deletemin, the rank of r is 0. Hence, the only way for r to have
10 children is that r merges with a tree of rank 0 to yield a tree of rank 1, then merges
with a tree of rank 1 to yield a tree of rank 2, and so on. r remains the root during the
above process.

(c) Assume that some time later r is still a tree root and has the same set of children. What is the smallest
possible value for max ranks(C) at this point?
Sol. 8 Remark: It is possible for a child of the subtree of rank 9 to be cut, due to a
decrease key.

(d) Continue from (c) above. What is the smallest possible value for |ranks(C)| at this point?
Sol. 5 Remark: {9→ 8, 8, 7→ 6, 6, 5→ 4, 4, 3→ 2, 2, 1→ 0, 0}

1

(e) Suppose some time later, r is still a tree root but no longer has the same set of children? Let C ′ be its
current set of children. What is the smallest possible value for |C ′|?
Sol. 0 Remark: If a cut is performed on each of r’s children, C ′ becomes empty.

〈 3 〉 (21 pts) Consider a max-ordered leftist heap, a max-ordered skew heap, and a max-ordered binomial heap.
Initially suppose each heap contains only a root node with key 5. First insert these keys in the given order:
4, 3, 2, 1. Next call deleteMax three times. Redraw the heap after each operation. For each heap, you must
draw the following intermediate heaps in detail:
Solution

Leftist

Skew

Binomial

〈 4 〉 (10 pts) The hash table shown below has capacity N = 11 and hash function H(x) = x mod 11. Note that
the keys 16 and 20 have already been inserted. Now insert these additional keys into the hash table in the
specified order: 60, 38, 71, 75, 35 using the following two methods.

0 1 2 3 4 5 6 7 8 9 10
16 20

(a) Using Quadratic probing
Solution

0 1 2 3 4 5 6 7 8 9 10
35 75 38 16 60 20 71

(b) Using Double hashing with H ′(x) = 7− (x mod 7)
Solution

0 1 2 3 4 5 6 7 8 9 10
71 35 38 75 16 60 20

〈 5 〉 (17 pts) Answer each of the following questions briefly yet precisely.

(a) (4 pts) Define the skew and the split operations in AA-trees. Draw pictures to show how they work.

(b) (4 pts) Explain how randomization is used in Skip lists and Treaps.

(c) (4 pts) When we say a sorting algorithm is stable, what does that mean? Is heapsort stable? Why?

(d) (2 pts) Define the function log∗ n.

2

(e) (3 pts) Define union by rank and path compression in disjoint set union-find.

Solution See textbook and classnotes.

〈 6 〉 (18 pts) Which of the following operations are supported by
(A): (classical) Binary Heaps. (B): Binomial Heaps. (C) Fibonacci Heaps.

(1) heapify(a1, ..., an) = create a heap on a given set of n elements in O(n) steps.

(2) insert(a,H) = insert element a to heap H in O(1) amortized steps.

(3) insert(a,H) = insert element a to heap H in O(log n) steps.

(4) deletemin(H) = delete the minimum element of heap H in O(1) steps.

(5) deletemin(H) = delete the minimum element of heap H in O(1) amortized steps.

(6) deletemin(H) = delete the minimum element of heap H in O(log n) amortized steps.

(7) merge(H1, H2) = combine heaps H1 and H2 into one heap in O(log n) amortized steps

(8) delete(a,H) = remove element a from heap H in O(log n) amortized steps.

(9) decrement(a, x,H) = decrease the value of the element a in H by amount x in amortized O(1) steps.

Complete the following table. If an entry is filled with AB, then the operation is supported by binary heaps
and binomial heaps, but not by Fibonacci heaps. Write None if supported by none of the three heaps.
Solution

1 2 3 4 5 6 7 8 9
ABC BC ABC NONE NONE ABC BC ABC C

〈 7 〉 (14 pts) In the following figure, the leftmost column (i.e., Column 1) is the original input of strings to be
sorted, and the rightmost column (i.e., Column 9) is the sorted result. The other columns are the contents
at some intermediate step during one of the 7 sorting algorithms listed below. Match up each algorithm by
writing its letter under the corresponding column. Use each letter exactly once.
(A). Bottom-up mergesort (B). Shellsort (C). Insertion sort (D). Quicksort (E). Selection
sort (F). Top-down mergesort (G). Heapsort
Solution

1 2 3 4 5 6 7 8 9
input F B E D C G A sorted

Recall that a top-down mergesort algorithm recursively splits the list into sublists until sublist size is 1,
then merges those sublists to produce a sorted list. On the other hand, a bottom-up mergesort algorithm
treats the list as an array of n sublists of size 1, and iteratively merges sub-lists back and forth between two
buffers.

3

