
Data Structures and Programming
Spring 2014, Final Exam.

Date: June 16, 2014

(A) (30 pts) True or False? (Mark O for true and × for false.) Score = max{0, Right - 1
2 Wrong}. No explanations

are needed.

(1) If every node in a binary tree of n nodes has either 0 or 2 children, then the height of the tree is O(log n).
× False

(2) The depths of any two leaves in a binary heap differ by at most 1.
⃝ True.

(3) A binary heap A (of n keys) has each of its keys randomly increased or decreased by 1. The random
choices are independent. We can restore the heap property on A in linear time (i.e., O(n) time).
⃝ True

(4) The following array is a max binary heap: [10, 3, 5, 1, 4, 2].
× False.

(5) Every directed acyclic graph has exactly one topological ordering.
× False.

(6) Given a graph G = (V,E) with positive edge weights, the Bellman-Ford algorithm and Dijkstra’s algorithm
can produce different shortest-path trees despite always producing the same shortest-path weights.
⃝ True.

(7) Dijkstra’s algorithm may not terminate if the graph contains negative-weight edges.
× False.

(8) If a depth-first search on a directed graph G = (V,E) produces exactly one back edge, then it is possible
to choose an edge e ∈ E such that the graph G0 = (V,E − {e}) is acyclic.
⃝ True.

(9) Given an undirected graph G = (V,E), it can be tested to determine whether or not it is a tree in
O(|V |+ |E|) time. A tree is a connected graph without any cycles.
⃝ True.

(10) If a directed graph G is cyclic but can be made acyclic by removing one edge, then a depth-first search in
G will encounter exactly one back edge.
× False. For example, in graph G = (V,E) = ({a, b, c}, {(a, b), (b, c), (b, a), (c, a)}), there are two cycles
(a, b, a) and (a, b, c, a) and a DFS from a in G returns two back edges (b, a) and (c, a), but a single removal
of edge (a, b) can disrupt both cycles, making the resulting graph acyclic

(11) The Bellman-Ford algorithm applies to instances of the single-source shortest path problem which do not
have a negative-weight directed cycle, but it does not detect the existence of a negative-weight directed
cycle if there is one.
× False

(12) The topological sort of an arbitrary directed acyclic graph G = (V,E) can be computed in linear time
(i.e.,O(|V |+ |E|) time) .
⃝ True

(13) We know of an algorithm for the single source shortest path problem on an arbitrary graph with no
negative-weights that works in O(|V |+ |E|) time.
× False

(14) If the load factor of a hash table is less than 1, then there are no collisions.
× False

(15) If an operation takes O(n) worst case time, then it takes O(n) amortized time.
⃝ True

(B) (10 pts) Give an O(k log k) time algorithm to return the kth smallest element in a min-heap H of size n, where
1 ≤ k ≤ n. Explain why your algorithm takes O(k log k) time .
(Hint: Create a new min-heap I which is initially empty. Then insert (H(0), 0) into I, where the first component
H(0) is the root of H and the second component 0 is the index of H(0). At any point in time, a node in I
is of the form (H(p), p) where p is an index. Use the first component of (H(p), p) (i.e., H(p)) as the key in

1

creating I.)
Solution:
Create an initially empty min-heap I with each of its elements of the form (H(p), p). The first step is to insert
(H(0), 0) into I. Then do the following:

For i = 1, .., k
(v, p) = I.extractMIN
if i == k then return v else
Insert both of p’s children into I

The reason to insert both of p’s children into I is that the smallest element in the remainder of H is the
smallest of the current elements in I plus the two children of p. Since the number of elements of I is bounded
by 2k, the O(k log k) bound of the algorithm follows.

(C) (5 pts) Suppose we have a priority queue data structure that supports EXTRACT-MIN and DECREASE-
KEY on integers in {0, 1, ..., u− 1} in O(log log u) time per operation. What is the resulting running time of
Dijkstra’s algorithm on a weighted directed graph G = (V,E) with edge weights in {0, 1, ...,W − 1}? Why?
Solution Dijkstra’s algorithm will call EXTRACT-MIN O(|V |) times and DECREASE-KEY O(|E|) times.
In total, the runtime of Dijkstra’s using this new priority queue is O((|V | + |E|)lglg(|V |W)). Note that the
maximum key in the priority queue is bounded by |V | ×W .

(D) (5 pts) Give an efficient algorithm to compute the union A∪B of two sets A and B of total size |A|+ |B| = n.
Assume that sets are represented by arrays that store distinct elements in an arbitrary order. In computing
the union, the algorithm must remove any duplicate elements that appear in both A and B. For full credit,
your algorithm should run in O(n) time.
Solution

You will still receive full credit if you give an O(n log n)-time algorithm.

For an O(n) algorithm, use perfect hashing with O(1) search time in the worst case for static data. Let H be
an initially empty hash table, and R be an initially empty growable array. For each element e in A and B, do
the following. If e is in H, skip over e. Otherwise, append e to R and insert e into H.

(E) (10 pts) Draw the skew heap that results from doing a delete-min on the skew heap shown below. Show the
details.
Solution

Page 8 of 10 8

2

(F) (15 pts) Running Time Analysis: Give the tightest possible upper bound for the worst case running time
for each of the following in terms of N . You MUST choose your answer from the following (not given in

any particular order), each of which could be re-used. O(N2) , O(N
1
2), O(N logN), O(N), O(N2 logN),

O(N5), O(2N), O(N3), O(logN), O(1), O(N4), O(NN), O(N6), O(N(logN)2), O(N2(logN)2)

(1) The decrease-key operation of a min-Fibonacci heap of N nodes.
O(N)

(2) Finding the minimum spanning tree of a weighted graph of N nodes using Kruskal’s algorithm. (You may
assume that the graph is dense, i.e., |E| = O(N2))
N2 logN

(3) Finding an element in a hash table of size N using open addressing with linear probing.
O(N)

(4) Finding (but not removing) the minimum value in a Fibonacci heap containing N elements.
O(1)

(5) Finding (but not removing) the minimum value in a binomial heap containing N elements.
O(logN)

(6) Finding an element in a hash table containing N elements where separate chaining is used and each bucket
points to an AVL tree. The table size = N .
O(logn)

(7) Finding the median value in a leftist heap containing N elements. (You dont know what the median value
is ahead of time.) You may assume N is odd.
O(N logN); DO N/2 deletions

(8) Breadth-first search of a graph with N nodes and N log2 N edges.
O(N log2 N)

(9) In union-find, what is the worst case running time of a single Find operation (without path compression),
assuming that Union-by-size has been used, where N = total number of elements in all sets.
O(logN)

(10) The height of a leftist heap of N nodes.
O(N)

(G) (5 pts) Consider a hash table of size 11. Open addressing with double hashing is used to resolve collisions.
The hash function used is H(k) = k mod 11 The second hash function is H2(k) = 5− (k mod 5). What values
will be in the hash table (A[0..10]) after the following sequence of insertions? 16, 23 9, 34, 12, 56.
Solution

0

1

3

2

4

5

6

9

8

7

10

(H) (20 pts) For each of the following operations, decide whether it is supported by the following three types of
min heaps: A = (classical) Binary Heaps. B = Binomial Heaps. C = Fibonacci Heaps. This is a
Multiple-choice question, i.e., your answer should look like: (1) A C (2) NONE (3) B, ..., for instance. No
explanations are needed.

(1) heapify(a1, ..., an): create a heap on a given set of n elements in O(n) steps.
ABC

(2) makeheap(a): create a heap on 1 element in O(1) steps.
ABC

3

(3) insert(a,H): insert element a to heap H in O(1) amortized steps.
BC

(4) insert(a,H): insert element a to heap H in O(log n) steps.
ABC

(5) deletemin(H): delete the minimum element of heap H in O(1) steps.
NONE

(6) deletemin(H): delete the minimum element from heap H in O(1) amortized steps.
NONE

(7) deletemin(H): delete the minimum element from heap H in O(log n) amortized steps.
ABC

(8) meld(H1,H2): combine heaps H1 and H2 into one heap in O(log n) amortized steps.
BC

(9) delete(a,H): remove element a from heap H in O(log n) amortized steps.
ABC

(10) decrement(a, t,H): decrease the value of the element a in H by amount t in amortized O(1) steps.
C

4

