Advanced Wireless Networking

Course Information

Hung-Yun Hsieh February 22, 2006

Registration Information

- Course information
 - Title: Advanced Wireless Networking (高等無線網路)
 - Code number: 942EU0390
 - Credit: 3 points
 - Time: Wednesday 2:20pm ~ 5:20pm
 - Place: Room 101, EE-II Building
- Instructor
 - Prof. Hung-Yun Hsieh <hyhsieh@cc.ee.ntu.edu.tw>
 - Office: Room 409, EE-II Building
 - Office hours: By appointment

Advanced Wireless Networking

- Goal and scope
 - This course is designed for students with wireless networks background who plan to pursue research on selected topics in wireless networking
 - It investigates fundamental theories and state-ofthe-art techniques for solving various important problems in wireless networks
 - The emerging area of embedded, networked sensors
 - Data-centric communication
 - In-network processing
 - Localization
 - Time synchronization
 - Fault tolerance
 - The Not necessarily limited to sensor networks

Not an Introductory Course

- Wireless sensor networks
 - Highly cross-disciplinary in nature
 - Diverse sensing & actuation technologies (e.g. audio, mechanical, optical, and biological)
 - Versatile applications (e.g. scientific, industrial, medical, military, commercial)
 - Circuit design, control, signal processing, communications, operating systems, ...
 - This course is not designed to prepare you with basics and overviews of sensor technologies and their applications for advanced topics in related disciplines
 - Hopefully the college will offer such a class in the near future

Intended Audience

- Networking issues in wireless sensor networks
 - Much of the recent greatest excitement about sensors comes from the idea of using large numbers of them that can communicate with each other and form ad hoc networks
- Prerequisites
 - Wireless ad hoc networks
 - In particular, knowledge in MAC and multi-hop routing protocols, and fundamental properties of connectivity and capacity for multi-hop wireless networks
 - Have a good command of network simulators (NS-2)
 - Have a good command of English (reading, writing, listening, and speaking)

Course Materials

- No textbooks
 - Selected articles from IEEE/ACM journals, magazines, and conference proceedings
 - Selected chapters from books in wireless sensor networks
- References
 - H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks, Wiley & Sons, 2005
 - C. Raghavendra, K. Sivalingam and T. Znati (eds), Wireless Sensor Networks, Springer, 2005
 - B. Krishnamachari, Networking Wireless Sensors, Cambridge University Press, 2005

Grading

- Grading criterion
 - Class participation (20%)
 - Homework and paper reviews (40%)
 - Term project (40%)
- Provide the second s
 - The good thing: no more students' nightmare to burn the midnight oil and cram yourself with details that you are not interested in
 - Fou can focus on the topics that interest you most and work on it as your term project
 - The bad thing (if you will): you don't assume the role of a conventional "student"

Collaborative Learning

Learn as you teach

- You will be disappointed if you expect someone to teach you everything that is to learn about this course
- You choose the topic you are interested in, research on it, and teach us
 - A preliminary list of references will be supplied
 - Read these papers and search for additional materials if necessary
 - Prepare for the teaching materials (e.g. slides) and meet me before presentation
 - Teach us what you have learned
 - Critique the literature, present and defend your opinions

So experts on all areas here: we are all learning!

More on Literature Review

- Presentation
 - Each topic is allocated two weeks of time
 - First week: fundamental concepts and solutions
 - Second week: state-of-the-art technology and in-depth investigation
 - Better interaction with the audience
- Discussion forum
 - Each topic has a discussion forum where the presenters play the key role in initiating discussions, and answering questions
 - Post the review report after the presentation
- Active class participation required

Homework

- Beyond literature review
 - Hands-on exercises using simulations
 - Tools that will be used
 - Generic network simulator NS-2
 - Mote simulator (emulator) TOSSIM
- TOSSIM: TinyOS mote simulator
 - TinyOS is an event based, open-source operating environment designed for use with embedded networked sensors

☞ Supported hardware: Mica, Mica2, MicaZ, Telos, iMote, ...

- TOSSIM uses real application code for simulation (in particular for large-scale simulation)
- Can be extended to build your term project

Term Project

- Requirements
 - Related to the course topics
 - Interesting issues
 - Sufficient depth
- Project types
 - Protocol design and evaluation
 - Performance analysis
 - Network simulation
 - Testbed demonstration
 - Any work that has the quality of international conference papers is good for the project
- More details as we go along

Go Online

Web page

http://cc.ee.ntu.edu.tw/~hyhsieh/teaching/networking06s

- Announcement
- Access course materials
- Upload submissions (slides and reports)
 - Paper review
 - Homework
 - Project
- Discussion forum

http://tonic.ee.ntu.edu.tw/forum

Register first

Course Administration

- An English course
 - All formal submissions and oral presentations need to be in English
 - Use English for classroom interactions whenever possible
 - Language shouldn't be the reason that hold you back from speaking
- Teamwork
 - A group of two
- Class attendance
- Honest code