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ABSTRACT

The aggressive scaling of CMOS technology below 90nm brings forth many great new physical

challenges that must be addressed in the forefront of the design cycle. In addition to meeting

the usual timing and dynamic/switching power budgets, designers must also now carefully con-

sider issues such as leakage current/power, crosstalk noise, electromigration, IR drop, and even

manufacturing process variations. This thesis explores several novel techniques for mitigating

the effects of leakage current and process variations. In the first part of this thesis, a circuit-

tuning method for simultaneous optimization of critical delay, dynamic power, leakage power,

and yield will be proposed. The method is based on Generalized Lagrangian Relaxation, and

involves gate-sizing and multiple threshold voltage assignment. Experimental results show

that this method can not only effectively tune a circuit with over 15,000 variables and 8,000

constraints in under 7 minutes, but it can also minimize the impact of process variations on

timing. In the second part of this thesis, a ROBDD-based nodal control technique called Sec-

toral Partial Vector Control (SPVC) will be proposed to address the minimization of CMOS

subthreshold leakage current/power. Together with leakage-aware technology mapping, this

method was empirically shown to be capable of reducing the total static leakage power con-

sumption by as much as 69%. Overall, the two proposed techniques in this thesis can be used

either independently or together to provide a comprehensive and effective circuit optimization

framework for today’s complex designs.
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Chapter 1

Introduction

Due to the aggressive scaling of CMOS technology, today’s designs face a myriad of phys-

ical problems not seen in previous generations of technology. This chapter gives a brief intro-

duction to two of the most critical challenges among these problems in leakage current/power

and manufacturing process variations.

1.1 Leakage Current

In accordance with Moore’s Law, CMOS technology scales from one generation to another

approximately every 18 months. Specifically, Vdd scales down by 1/S every generation, where

S denotes the scaling factor. The reason why Vdd has been scaling down over time is because

of the fact that the dynamic or switching power consumption of a transistor is quadratically

dependent on its supply voltage level, as it can be seen in the following equation:

Pdynamic = α ∗ fclk ∗ Cload ∗ V dd2 (1.1)

This scaling methodology of Vdd and other device parameters by a uniform factor of S is

known as constant field scaling, and has been the industry standard for the past decade. How-

ever, since the reduction of Vdd alone would lead to a lower overdrive (Vgs - Vt) and thus a

lower drive current, the device threshold voltage level has also been scaling down every gen-

eration in order to sustain performance. Unfortunately, this has negatively impacted the device

subthreshold leakage current over time, as it can be seen from the following equation:

Ileakage =
Io

Wo
∗ W ∗ 10

Vgs−Vt
S (1.2)
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Figure 1.1 Power density as a function of the channel length, Lpoly

Equation 1.2 shows that the subthreshold leakage current of a device is inversely and expo-

nentially proportional to its Vt level. Thus, the lowering of Vt through scaling has led to an

exponential increase of leakage current/leakage power over the past decade. Consequently, in

today’s 90nm technology, leakage power already accounts for close to 50% of the total power

consumption in Intel Pentium 4 microprocessors [1]. As it can be seen from Figure 1.1 [2], this

will only continue to get worse as the leakage power is expected to overtake dynamic power

sometime in the near-future as the largest contributor of power. Thus, for today’s designers,

minimization of both dynamic and leakage power is critical for achieving power closure.

1.1.1 Leakage Current Components

In general, the leakage current is comprised of several components. Referring to Figure

1.2, the eight different leakage mechanisms present within a transistor are as follows:

1. P-N Junction Reverse-Bias Current (I1)

Current which leaks from drain to bulk when the drain voltage is reverse-biased with

respect to the bulk potential (thereby forming a natural, reverse-biased P-N junction).
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Figure 1.2 Components of leakage current

2. Subthreshold Leakage Current (Weak Inversion) (I2)

One of the dominant sources of leakage current, subthreshold leakage is the current

which flows from drain to source even when |Vgs| < |Vt| (but above the weak inversion

point) and the transistor is supposed to remain turned-off. Similar to charge transport

across the base of a bipolar transistor, the carriers move by diffusion between the drain

and the source. The subthreshold current, under some mild assumptions, is modeled by

Equation 1.2. As it can be seen, the subthreshold current has an exponential and inverse

dependence on the threshold voltage, Vt. The lower the Vt, the higher the subthreshold

leakage current.

3. Drain-Induced Barrier Lowering (DIBL) (I3)

This leakage current from drain to source results when there is a high-enough voltage

applied to the drain such that the depletion region of the drain interacts with the source,

thereby causing the source potential barrier near the channel surface to lower. Due to this
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effect, the carriers can now be injected into the channel surface by the source without any

influence from the gate.

4. Gate-Induced Drain Leakage (GIDL) (I4)

Carriers which flow into the substrate and drain due to the high electric field between the

gate and the drain overlap region.

5. Punchthrough (I5)

This occurs when the depletion regions of the drain and the source electrically touch each

other.

6. Narrow Width Effect (I6)

For transistors using trenched-isolated technology, their effective Vt decreases for chan-

nel width W ≤ 0.5µm [3]. The lower the Vt, the higher the leakage current.

7. Gate Oxide Tunneling (I7)

Another major source of leakage, this is the current which flows due to the direct tunnel-

ing of electrons through the gate, or Fowler-Nordheim (FN) tunneling through the oxide

bands. This current is a function of the oxide’s electric field. Thus, as Tox scales down,

the thinning of the gate oxide leads to an exponential increase of the gate leakage. In

current 90nm technology, the magnitude of this leakage component is on-par with that

of the subthreshold leakage. However, unlike the subthreshold leakage, there are cur-

rently no good solutions to this problem at the circuit level. Most solutions exist at the

device level (ie. high-K dielectric), but even they are still under heavy research. Thus,

this leakage component is expected to be a major source of problem in future designs.

8. Hot Carrier Injection (I8)

This current results from the injection of hot carriers (both electrons and holes) into the

oxide.

Among the eight different leakage mechanisms listed above, most of the total leakage cur-

rent in today’s 90nm process can be attributed to the reverse-biased P-N junction leakage, the
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gate-induced drain leakage, the subthreshold weak inversion leakage, and the gate oxide tun-

neling leakage. Although there are some known solutions for dealing with the reverse-biased

P-N junction leakage and the gate-induced drain leakage, these leakage components are still

small in magnitude when compared to the gate and the subthreshold leakage. Since there are

currently no good solutions for dealing with the gate tunneling leakage, this thesis will instead

focus on the reduction of the subthreshold leakage component only, which is still the most

dominant source of leakage current.

1.2 Manufacturing Process Variations

Beside leakage current/power, another challenge facing today’s IC designers is manufac-

turing process variations, which worsens as device geometry shrinks. Manufacturing process

variations can cause not only performance degradation, but also functional incorrectness if it

is not properly accounted for in the design. For example, suppose the critical delay of a cloud

of combinational logic gets altered due to process variations. If this cloud of logic sits in be-

tween two flip-flops, then the setup time and/or hold time of the flip-flops could be violated

if the variation is large enough. Thus, delay variations can lead to functional incorrectness.

Also, leakage power variations is quickly becoming a significant problem as well. In fact, it

has been demonstrated by Intel that the leakage power in today’s process could vary and in-

crease by anywhere between 10x to 100x, depending on the degree of variations to the device

channel length [4]. Clearly, this could lead to unacceptable power consumption and violation

of the power budget. Thus, designers today must take careful consideration of the impact of

manufacturing process variations. One way to do so is to add timing margins at the expense

of performance in order to guarantee correctness (even in the presence of significant process

variations) [5].

We now briefly elaborate on the sources of process variations, then conclude this section

with a discussion on how traditional gate-sizing methods can worsen the impact of delay vari-

ations.
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1.2.1 Sources of Process Variations

For integrated circuits, performance variability is mainly impacted by two sets of fac-

tors: environmental and physical. Environmental factors include variations in the temperature,

power supply voltage, and coupling noise among nets. Physical factors include variations in

device parameters, such as width and channel length. Physical factor variations are caused by

processing, mask imperfections, and reliability-related degradation. Environmental factors are

usually analyzed at the intra-die level, while physical factors are addressed at both inter and

intra-die level.

Inter-die variation refers to the variation between different dies on a wafer only. Thus, the

environmental/physical factors are assumed to be constant within a die. On the contrary, intra-

die variation refers to the case where the factors vary even within a die. For inter-die variation,

since the factors are constant within a die, they are independent of the layout of the design.

Thus, it is common to treat intra-die variation as variability imposed upon the design [5]. Such

variability can then be analyzed using either worst-case techniques, Monte Carlo simulations,

or classical statistical analysis. On the other hand, for inter-die variability, analysis of the

variation can be difficult due to the large number of varying entities. Nevertheless, there have

been several analytical techniques proposed.

1.2.2 Impact of Traditional Gate-Sizing Methods on Delay Variability

One of the most common circuit optimization techniques for helping to achieve timing and

power closure is gate-sizing. In addition to sizing up those gates which are on the critical paths

to make them faster, traditional gate-sizing methods try to size down those gates which are

on the non-critical paths in order to reduce their power consumption. This tuning process is

typically applied iteratively until most of the paths become equally critical. Thus, the final

path-delay distribution of a circuit tends to exhibit a ”wall-like” shape after gate-sizing [6],

as can be seen in Figure 1.3. In older technologies where there was not too much process

variations, this did not have any drawbacks at all. However, as process variations become more

significant in the future, applying such traditional gate-sizing methodology can actually pose
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Figure 1.3 Path-delay distribution after traditional gate-sizing

a problem. This is because if a circuit has many critical paths, the probability that its critical

delay gets increased post-process variations is high, since only one of the critical paths needs

to be perturbed to cause the overall delay to fluctuate. Thus, applying traditional gate-sizing

methods can exacerbate the impact of delay variability and potentially hurt the yield (due to

resulting functional incorrectness).
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Chapter 2

Background and Motivation

In Chapter 1, the looming challenges in future IC designs were introduced. In this chapter,

we give a brief background review on some of the previous works done in gate-sizing and

leakage current/power control. We also highlight the main flaws in these earlier works in order

to justify the motivation behind this thesis work.

2.1 Previous Works on Gate-Sizing

It is well-known that optimization at the circuit-level can play a significant role in helping

to achieve timing and power closure. Specifically, since varying a transistor’s width can affect

its delay, area, dynamic power, and even leakage power, experienced IC designers typically

try to fine-tune the size of each transistor in a circuit individually such that the optimal design

tradeoff point is achieved. However, given the size complexity of modern designs as well as

the degree of freedom in this tuning process, it is not surprising that the cumbersomeness of

this task can easily outweigh its benefits, especially if the designer has to adjust each and every

transistor uniquely.

Gate-sizing, as opposed to transistor-sizing, is one approach by which the complexity of

the tuning task can be alleviated. That is, rather than trying to tune each and every transistor

individually, the sizes of the transistors in a gate are kept constant (with pmos-to-nmos ratio

enforced) and tuning is done only on a gate-by-gate basis. Another alternative is to tune the
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drive strength of each gate such that the pre-supplied drive strength cell instances from a stan-

dard cell library can be used. The former approach is appropriate for full and semi-custom

design methodologies, while the latter is more suited for the ASIC flow.

The importance of circuit tuning has been well-documented in the literature [7–11]. Due

to stringent time-to-market requirements as well as the high complexity of the tuning process,

most large semiconductor companies today automate the tuning process by have either their

own internal tuning CAD tool or some external tool purchased from an EDA vendor. To be suc-

cessful, these tools must not only be effective, but must also be runtime and memory-efficient.

In general, circuit tuning tools fall into two categories: static and dynamic tuning. Static tun-

ing is a method whereby the tuning is carried out irrespective of the input vector pattern. This

can be done by using a worst-case cornering approach and considering all paths in the circuit

simultaneously. Dynamic tuning, on the other hand, involves the use of transient simulations

to aid the tuning process. Consequently, this procedure is heavily input vector-dependent and

computationally expensive. On the other hand, by relying on detailed simulations instead of

pessimistic worst-case estimates, dynamic tuning can arrive at a much more accurate tuning

result than static tuning. Nevertheless, despite trading off accuracy for runtime and memory

usage, static tuning is currently the preferred method of the two.

2.1.1 Gate-Sizing Using Mathematical Programming Techniques

It has been shown in past works [7,9–11] that the circuit tuning problem can be expressed as

a large-scale nonlinear optimization problem subject to constraints and bounds. The constraints

involve maximal arrival time, maximal total power, area, slew rate, etc., while the bounds apply

to the lower and upper limits imposed on the tunable transistor width range. The objective is

typically either delay, area, or a mixture of the two. Using the Elmore Delay model, both the

delay and the area can be expressed as a function of the transistor width. Thus, the tunable pa-

rameters in the optimization problem are the transistors’ widths as well as their pmos-to-nmos

ratios. The problem can then be solved using any standard, numerical mathematical program-

ming technique for nonlinear constrained optimization problems. If formulated properly, the
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problem will be convex and the solution will be guaranteed to be globally optimal. This is one

of the key strengths to mathematical programming-based circuit tuning.

Among the well-known circuit tuning tools based on mathematical programming tech-

niques, JiffyTune [12], EinsTuner [13], and Lagrangian Relaxation (LR)-based tools [7, 11]

have all shown great promise in handling large-scale VLSI circuits. JiffyTune utilizes dynamic

simulations to achieve high accuracy, while EinsTuner relies on static timing analysis with ar-

rival time pruning to perform fast and efficient static tuning. Both methods use an Augmented

Lagrangian function with penalty barriers to solve the optimization problem. LR-based tools,

on the other hand, utilize only the regular Lagrangian function. The key to this approach lies

in the pruning of the Lagrange multipliers and their subgradient adjustment procedure. This

method has been experimentally proven to be fast, effective, and memory efficient.

2.2 Previous Works on Leakage Control

As was mentioned in Chapter 1, the four largest components of leakage current are the

reverse-biased P-N junction leakage, the gate-induced drain leakage, the weak inversion sub-

threshold leakage, and the gate oxide tunneling leakage. Between these four, the reverse-biased

P-N junction leakage and the gate-induced drain leakage are typically negligible in magnitude

compared to the other two, so we do not discuss them in this work. As for the gate oide tun-

neling leakage, no good solution are known at present (high-K dielectric is still under research,

and is being planned for introduction in 2006). Thus, this section will focus on only the back-

ground of subthreshold leakage current control, which still happens to be the largest component

of leakage current in today’s 90nm technology.

For subthreshold leakage control, many circuit-level and architectural-level solutions are

available. Several of these techniques are based on the body effect of the threshold voltage,

which is given by the following equation:

Vt = Vto + γ
[

√

2Φb + |Vsb| +
√

2Φb

]

(2.1)
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The important thing to note from Equation 2.1 is that the threshold voltage is a function

of the potential difference between the source and the bulk. This is the key to some of the

known subthreshold leakage control techniques that have been proposed to-date, which we

will discuss now.

2.2.1 Vt Hopping

One technique that has been proposed is Vt-hopping [14], whereby the threshold voltage is

adjusted dynamically during runtime to suit the running applications’ needs. For example, if an

operation requires low-latency, then Vt can be lowered to speed up the performance. Otherwise,

Vt can be elevated during high-latency operations and idle periods so that the subthreshold

leakage current can be minimized over time. However, Vt can only take on certain discrete

levels of voltage, hence the meaning of ”hopping” from one Vt to another.

2.2.2 Reverse Body-Biasing

Another technique for subthreshold leakage control is reverse body-biasing. The idea is

that since the threshold voltage is affected by the body effect (Equation 2.1), reverse-biasing the

bulk potential (with respect to the source) dynamically during runtime can lead to an elevated

Vt, which results in lower subthreshold leakage current. Of course, this comes at the expense

of performance, since the transistors will slow down due to having smaller drive currents.

2.2.3 MTCMOS (Sleep Transistors)

Yet another well-known subthreshold leakage control technique is Multi-Threshold CMOS

(MTCMOS) [15], or sometimes referred to as sleep transistors. The basic idea is shown in

Figure 2.1 [16], where it can be seen that two high-Vt sleep transistors are inserted on the top

and bottom of a normal low-Vt block. These are commonly called the header and the footer.

During idle or sleep mode, these sleep transistors are gated-off to reduce the Virtual Vdd and

increase the Virtual GND. As a result, |Vsb| increases for the connecting devices in the low-Vt

block, thereby resulting in reduced subthreshold leakage current flow. This technique is one of
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Figure 2.1 MTCMOS (sleep transistors)

the most effective leakage solutions available, but it incurs a heavy penalty in the delay, area,

and switching power overhead due to the insertion of the extra sleep transistors.

2.2.4 Input Vector Control (IVC)

A technique that works similar in principle to MTCMOS but incurs less overhead is Input

Vector Control (IVC) [17–20]. By selectively assigning the input pattern during sleep mode,

the overall circuits’s static leakage power consumption can be lowered during sleep periods.

The reason that the subthreshold leakage current is input pattern-dependent comes from the

fact that the transistors are naturally stacked in series in CMOS gates. This means that under

different input values, different number of transistors in the series will be turned off. The more

the off-transistors, the higher the |Vsb| of the connecting devices, and thus the higher the Vt.

This phenemonon is known as the stacking effect [21], and it has been shown that the stacking

effect can be exploited to reduce the subthreshold leakage current by orders of magnitude.

Thus, although input vector control is similar in principle to MTCMOS, it does not incur as

high of a penalty as MTCMOS because no extra sleep transistors are inserted. The downside to
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this approach is that the power savings is not as good as MTCMOS because the effectiveness

of this technique is strongly dependent on a circuit’s logic depth as well as its logic structure

arrangement. Another drawback is that the optimal input vector determination problem is NP-

hard. Fortunately, many good heuristics have been proposed, such as one based on greedy

algorithm with branch-and-bound [19] and one on satisfiability [20].

2.2.5 Dual-Vt Assignment

Perhaps the most well-known leakage control technique today is dual-Vt assignment [22].

In this technique, normal low-Vt devices in the non-critical paths are replaced by their high-Vt

equivalent counterparts so that the leakage current can be reduced without impacting the overall

critical delay. Many efficient algorithms for finding the replaceable low-Vt devices have been

proposed, and this technique is now becoming a standard practice in even ASIC designs. In

fact, most standard cell libraries today come with two (or sometimes even more) available sets

of cells, one high-Vt and one low-Vt.

2.3 Motivation of this Thesis Work

There are many motivations behind the works proposed in this thesis. First, from the circuit

tuning perspective, it is clear that Lagrangian Relaxation-based approaches are more efficient

and just as effective as their Augmented Lagrangian counterparts. However, in all previous

works on LR-based tuning, the accuracy of the result is hindered by the use of the Elmore delay

model in the problem formulation. Furthermore, these earlier works employed a Guass-Siedel-

like greedy and local optimization flow in the Lagrangian subproblem solving step, which again

hurts the result’s accuracy as well as the runtime. Last and most significantly, these previous

works do not consider the impact of gate-sizing on leakage current/power and delay variability.

Since the leakage current is a direct function of the transistor width and the delay variability is

worst when there exists many critical paths in a circuit, applying these previously-proposed LR

sizing methods would significantly degrade the design in today’s technology. Also, as multiple
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Figure 2.2 Example circuit demonstrating the inefficiency of Input Vector Control. Table on
the right corresponds to the leakage current for a NAND2 under different input combinations

Vt usage starts to become mainstream, it would be beneficial to consider the optimization of

transistor sizes and Vts simultaneously as opposed to orthogonally.

From the leakage reduction mechanism perspective, it is clear that Input Vector Control is

highly promising due to its low overhead cost. However, although IVC has shown some success

in leakage control, nearly all of the findings to-date have been performed on small benchmarks,

which are not really representative of the type of complexity and size one would see in modern

circuits. This is actually a serious flaw because intuitively, one would expect the effectiveness

of input assignment to wane with increasing circuit size. For example, consider the circuit

shown in Fig. 2.2. The table on the right hand side show what each NAND2’s leakage current

value would be under different input patterns. As it can be seen, out of all 16 possible input

combinations, the minimal-leakage input vector for this circuit is ABCD={0000}. However,

even with this vector, gate G3 still happens to be poorly controlled. This is unavoidable due to

the way the gates are arranged, or the logical structure of the circuit. The larger the circuit, the

higher the probability that interferences like this occurs. Therefore, the degree of effectiveness

one can achieve with standard IVC will be ultimately bounded by how large a circuit is and by

how favorably its gates are arranged. This is clearly a strong drawback to what would otherwise

be a great leakage control technique.
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Chapter 3

LARTTE: A Delay Variation-Aware Generalized Lagrangian
Relaxation Tuning Tool for Fast and Effective Gate-Sizing and
Multiple-Vt Assignment

In this chapter, we propose a novel method to perform efficient gate-sizing and multiple Vt

assignment using LR and posynomial modeling. Our algorithm optimizes a circuit’s delay and

power consumption subject to slew rate and transistor width constraints, and can readily take

manufacturing-induced delay variations into account. We first use SPICE to generate accurate

delay and power models in posynomial form [23] for standard cells, then formulate a large-

scale, convex optimization problem based on these models. Finally, we perform LR to solve

for the globally-optimal (with respect to the posynomial-based optimization problem, with-

out discretization) set of transistor sizes and Vts (with discretization) for each gate. The key

contribution of this work is that our LR-based gate-sizing method is delay variation-tolerant,

can perform tuning in a ”generalized” or non-Gauss-Seidel manner, and can simultaneously

and optimally carry out the Vt assignment procedure for leakage reduction. Experimental re-

sults show that our implemented tuning tool, LARTTE, exhibits linear runtime and memory

usage requirement, can effectively tune a circuit with over 15,000 variables and 8,000 con-

straints in under 7 minutes, and can minimize the impact of delay variation by introducing a

timing margin between the worst output arrival time and all other outputs’ arrival times. Our

experiments also show that LARTTE compares favorably with SNOPT [24], a state-of-the-art

general-purpose optimization problem solver. LARTTE is over 250x faster than SNOPT, but

can achieve the same quality of results.
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This chapter is organized as follows. Background and posynomial modeling information

are detailed in Section 3.1, followed by the main LARTTE algorithm description in Section

3.2. Modifications to LARTTE to guard against delay variations is detailed in Section 3.3.

Experimental results and concluding remarks follow in Section 3.4 and Section 3.5. Lastly, in

Section 3.6, we give a modified LARTTE algorithm that can be used in an ASIC flow.

3.1 Preliminaries and Posynomial Modeling

In this section, we first define the notations that we will be using throughout this chapter.

Then, we provide some background information on posynomial functions and optimization

problems in general. Finally, we describe the method that we used to accurately characterize

the various attributes of a gate (ie. delay, dynamic power, leakage power, input slew, etc.) as

posynomial functions.

3.1.1 Notations

The following notations are used throughout this paper. Given a combinational circuit, we

first introduce two auxiliary nodes, a sink and a source (see Figure 3.1). The sink has all of its

fan-ins from the primary outputs, and the source has all of its fan-outs to the primary inputs.

The nodes in the circuit are labeled in reverse topological order, with the sink having the index

of 0 and the source having the index of N (assume N total nodes). Let input(i) and output(i)

be the set of node indices that connect directly to the input(s) and output(s) of node i. Define D

and G to be the set of primary inputs and internal gate components in the circuit, respectively.

For i ∈ G, ai is the arrival time at the output of gate i, Wgi
is the width of the NMOS and

PMOS (adjusted by a γ ratio), Vtni
and Vtpi

are the NMOS and PMOS threshold voltages, CLi

is the loading capacitance (expressed as a function of the widths of the loading gates), and si is

the slew rate of gate i. For simplicity of presentation, ai and si are assumed to be the same for

both the rising and the falling transition. Let Ti, Di, Pdynamici
, and Pleakagei

denote the input

slew rate, propagation delay, dynamic power, and leakage power posynomial functions of gate

i, respectively. Lastly, define Lwi
and Uwi

to be the lower and upper bound of Wgi
, Ltni

and
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Figure 3.1 Notations used in this work

Utni
to be the lower and upper bound of Vtni

, and Ltpi
and Utpi

to be the lower and upper bound

of Vtpi
.

3.1.2 Background: Nonlinear Optimization Problems and Posynomial Func-
tions

In general, nonlinear constrained optimization problems [25] have the form:

minimize f0(x)

subject to gi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , n (3.1)

where x ∈ <n is a n-vector of optimization variables and f0, gi, and hi are the objective func-

tion, inequality constraints, and equality constraints, respectively. If f0, gi, and hi are all convex

functions, then the problem becomes a convex optimization problem. An important property

of the convex optimization problem is that any locally-optimal solution is also guaranteed to

be globally-optimal.
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A posynomial function has the form:

f(x) =
k
∑

j=1

cj

n
∏

i=1

x
αij

i (3.2)

where f is a real-valued function whose domain x ∈ <n is non-negative, cj ≥ 0, and αij ∈ <.

A posynomial is a sum of monomials. It is well-known [23] that under a simple exponential

transformation, a posynomial function can be converted into a convex function. Hence, if an

optimization problem is expressed in terms of posynomial functions, then a global minimum

can be easily found by searching for a local minimum, which can be done with any formal

mathematical programming technique [25]. Thus, this is the main reason to use posynomials

to model gate characteristics.

3.1.3 The Posynomial Modeling Procedure

The posynomial modeling procedure is essentially done via least-square regression analysis

on SPICE simulation data. Formally, we define the posynomial parametric regression problem

as follows:

Posyfit: minimize
z
∑

m=1

((

k
∑

j=1

cj

n
∏

i=1

x
αij

i

)

− bm

)2

subject to cj ≥ 0, 1 ≤ j ≤ k (3.3)

where x ∈ <m×n corresponds to m different sets of a n-vector of tunable parameter values,

b ∈ <m is a vector of m different SPICE-simulated scalar results (each corresponding to one

unique simulation run under the associated tunable parameter values in x), and k, c ∈ <k, and

α ∈ <k×n are the unknown parameters that we are trying to determine. The value of m is user-

defined and corresponds to the number of SPICE simulations that will be run to generate the

necessary bi values for posynomial-fitting. In general, a higher m leads to a greater accuracy

in the final characterized posynomial, but in turn requires a longer pre-processing time (as

SPICE simulations are inherently time-consuming). The value of n is the number of tunable

parameters which affect the metric being approximated. For example, if the delay posynomial
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form is being determined, then n equals 5, for the delay of a gate depends on Wg, CL, Vtn, Vtp,

and s (slew rate). Note that Wg here denotes the size of NMOS only. A pre-fixed γ ratio is

used to automatically adjust the PMOS size during tuning.

The posynomial-fitting procedure works as follows. First, we select m different sets of

n-tunable parameter values and simulate each individually to find m different bi values. Then,

after plugging these terms back into equation 3.3, we are left with 3 unknowns, k, c, and

α. To solve for these, we first guess a value for the vector α and its dimension k. Then,

using α and k, we solve for the last remaining unknown, c, using CFSQP [26], a general-

purpose unconstrained problem solver. If the resulting least-square value using the solved c is

below an error tolerance level, we stop and return the characterized posynomial form (the inner

summation term). Otherwise, we repeat the fitting-procedure for a different guess of α and k,

and continue to do so until the least-square error is minimized.

To avoid excessive trial count in guessing the posynomial form, we employ the following

heuristic when trying to find the right k, c, and α. First, we guess a dominant monomial term by

exploiting well-known dependence relationships. For example, for the delay posynomial, we

start with a term that has W−1
g and C1

L, since we know in general that the delay of a gate depends

on its loading capacitance and its drive strength. Then, based on the resulting fitting error using

this guess, we gradually adjust the power coefficients appropriately and add more monomial

terms into the posynomial equation until we find a reasonably accurate approximation.

We give the following example to more clearly illustrate the posynomial-fitting procedure.

Suppose that we are trying to determine the delay posynomial of a particular gate, say a CMOS

inverter. Then, let m=2 and pick the following two sets of tunable parameter values: {Wg=3,

Vtn=0.7, Vtp=0.7, CL=5, s=0.5} and {Wg=4, Vtn=0.9, Vtp=0.8, CL=2, s=0.7}. Next, we simu-

late in SPICE the delay of an inverter under these two sets of parameters, and call the results b1

and b2. Assume for this example that b1=15 and b2=10. Given these data, the Posyfit problem
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is reduced to the following:

minimize

((

k
∑

j=1

cj3
α1j0.7α2j0.7α3j5α4j0.5α5j

)

− 15

)2

+

((

k
∑

j=1

cj4
α1j0.9α2j0.8α3j2α4j0.7α5j

)

− 10

)2

+

subject to cj ≥ 0 (3.4)

It should be noted that the k, c, and α values are required to be the same across all m copies of

the inner summation term, since we are trying to determine a posynomial model that would be

accurate for any set of parameter values. With the reduced Posyfit problem, we can then carry

out the iterative fitting procedure to find the unknown parameters (k, c, and α), and thus the

delay posynomial function, for the inverter. The returned posynomial is expressed as a function

of Wg, Vtn, Vtp, CL, and s. For illustration purpose, the following is the actual inverter delay

posynomial form found in this work:

Dinv(Wg, Vtn, Vtp, CL, s) =0.39VtnV −1
tp + 2.14W−1

g CLVtp + 623V 0.5
tp W 0.5

g +

12.2V 3
tn + 29W 0.5

g V −1
tn V 0.5

tp + 0.14s0.5+

1.07W−1
g CLV 2

tnV −1
tp . (3.5)

In this work, we set the stopping criteria of the fitting procedure to be when 90% of the

fitting samples, using the guessed posynomial form, agree numerically to within ± 10% of

their corresponding SPICE results. Also, when generating the SPICE values, we assumed the

worst case conditions (ie. for delay simulations, the input signal to the last transistor in the

stack is set to arrive last, etc). Table 3.1 shows the model-fitting error mean and standard

deviation for the characterized gates. Prefixes Inv, Na, and No in the table represent inverter,

NAND, and NOR gates, and suffixes TP, PL, and PD represent delay, leakage, and dynamic

power respectively. The unit for the entries in the table is the % difference (in either direction)

between the samples’ values using the final posynomial form and their corresponding SPICE

results. For example, the leakage power posynomial of an inverter (InvPL) has a mean fitting
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Table 3.1 Model-fitting error mean and standard deviation

Gate Mn. Dev. Gate Mn. Dev. Gate Mn. Dev.

InvPD -0.1 3.5 Na6TP -0.2 4.7 No4PL -2.7 6.0

InvPL -2.6 5.6 Na7PD -0.2 4.4 No4TP -0.1 3.2

InvTP -0.1 2.5 Na7PL -0.1 1.8 No5PD -0.1 2.1

Na2PD -1.2 6.5 Na7TP -0.2 4.8 No5PL -0.0 1.8

Na2PL -0.0 1.6 Na8PD -0.2 4.5 No5TP -0.2 4.7

Na2TP -0.1 3.4 Na8PL -0.0 1.8 No6PD -0.1 2.2

Na3PD -0.4 6.7 Na8TP -0.3 4.9 No6PL -2.7 6.1

Na3PL -0.0 1.8 Na9PD -0.2 4.9 No6TP -0.1 3.2

Na3TP -0.2 4.2 Na9PL -0.0 1.9 No7PD -0.1 2.3

Na4PD -0.3 5.6 Na9TP -0.3 5.1 No7PL -2.8 6.5

Na4PL -0.0 1.8 No2PD -0.8 6.6 No7TP -0.1 3.0

Na4TP -0.2 4.5 No2PL -2.5 5.4 No8PD -0.1 2.4

Na5PD -0.2 4.9 No2TP -0.1 3.2 No8PL -2.8 5.6

Na5PL -0.0 1.8 No3PD -0.7 6.3 No8TP -0.1 3.0

Na5TP -0.2 4.7 No3PL -2.6 5.6 No9PD -0.1 2.6

Na6PD -0.2 4.5 No3TP -0.1 2.9 No9PL -2.8 5.5

Na6PL -0.0 1.8 No4PD -0.2 4.5 No9TP -0.1 3.1

error of 2.6%, and a standard deviation of 5.6%. For illustration purpose, the fitting error

distribution for a NAND6 is also given in Figure 3.2. The unit for the x-axis in these figures is

again the % difference.

3.2 Posynomial-Based Lagrangian Relaxation

In this section, we derive a generalized Lagrangian Relaxation tuning algorithm which in-

corporates the use of posynomial delay and power models. The section is organized as follows.
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Figure 3.2 Model-fitting error distribution for a NAND6 gate.

In 3.2.1, we formally formulate the circuit tuning optimization problem, or the Primal Problem

(PP). 3.2.2 introduces the Lagrangian Subproblem, LRS/λ. 3.2.3 states the first-order KKT

condition which will be used in our algorithm to significantly speed up the tuning process. 3.2.4

outlines the Lagrange Multiplier adjustment scheme used in this work, while 3.2.5 describes

the method by which LRS/λ can be solved optimally, efficiently, and accurately in a gener-

alized manner. This will in turn solve our original problem (PP) as well. Finally, in 3.2.6,

we discuss the necessary post-tuning Vt discretization heuristic as well as give a summary of

LARTTE.
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3.2.1 Primal Problem Formulation

In general, the problem of minimizing the maximum delay and total power consumption

(dynamic + leakage) subject to arrival time/width/slew constraints can be formulated as a large-

scale, nonlinear programming problem. We call the following the Primal Problem (PP):

PP : minimize α1a0 + α2Pleakage(Wg, V tn, V tp, s)

+ α3Pdynamic(Wg, CL, V tn, V tp, s)

subject to aj ≤ a0, j ∈ input(0)

aj + Di ≤ ai, i ∈ G ∩ ∀j ∈ input(i)

Di ≤ ai, i ∈ D

Ti ≤ si, i ∈ (D ∪ G)

Lwi
≤ Wgi

≤ Uwi
, i ∈ G

Ltni
≤ Vtni

≤ Utni
, i ∈ G

Ltpi
≤ Vtpi

≤ Utpi
, i ∈ G (3.6)

where α1, α2 and α3 are the normalized weighting factors to the maximum delay of the circuit,

a0 (arrival time of the artificial sink node), total leakage power, Pleakage, and total dynamic

power, Pdynamic (For simplicity of presentation, the activity factor is not shown in the parameter

list of the Pdynamic term because it is not a tunable parameter). The sum of α1, α2, and α3

is 1. The weighting factors are user-assigned based on the operating condition of the target

application, such as how much time spent in idle mode, how critical is the timing of the design,

etc. (Alternatively, a more sophisticated α assignment scheme could be applied, ie. iteratively

invoking LARTTE and adjusting the α factors along the way based on the previous iteration’s

tuned results). For all other notations, see Section 3.1.1.
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From simple rearrangement, equation 3.6 can be transformed into the following:

minimize α1a0 + α2Pleakage(Wg, V tn, V tp, s)

+ α3Pdynamic(Wg, CL, V tn, V tp, s)

subject to
aj

a0
≤ 1, j ∈ input(0)

aj + Di

ai
≤ 1, i ∈ G ∩ ∀j ∈ input(i)

Di

ai
≤ 1, i ∈ D

Ti

si
≤ 1, i ∈ (D ∪ G)

Lwi
W−1

gi
≤ 1, Wgi

U−1
wi

≤ 1, i ∈ G

Ltni
V −1

tni
≤ 1, Vtni

U−1
tni

≤ 1, i ∈ G

Ltpi
V −1

tpi
≤ 1, Vtpi

U−1
tpi

≤ 1, i ∈ G (3.7)

In general, PP is not in the form of a convex optimization problem. However, posynomials

can be readily transformed into convex form by the following simple exponential transforma-

tion of the variables [23]: Let x represent the vector of all tunable parameters, and transform

each entry xi in x to a new variable yi, where xi = eyi . Now, y represents the vector of tun-

able parameters, and it is substituted into the PP equation for x to form a convex optimization

problem. Applying LR to the transformed PP will give us an optimal solution in terms of y,

but we can easily recover the desired xis by exponentiating the yis.

3.2.2 Lagrangian Relaxation with Logarithmic Transformations

From PP, after making the necessary exponential variable transformations (to both the

posynomials as well as the arrival time terms), the next step is to make a Logarithmic trans-

formation on the non-simple constraints by taking the natural log of both sides (We perform

the Logarithmic transformation because empirically, we found that it resulted in exceptional

runtime improvement). Since the logarithmic function is monotonically increasing, this can be
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done without affecting the final result. The newly transformed problem is the following:

minimize α1e
a∗

0 + α2P
∗
leakage(Wg, V tn, V tp, s)

+ α3P
∗
dynamic(Wg, CL, V tn, V tp, s)

subject to ln (
ea∗

j

ea∗

0

) ≤ 0, j ∈ input(0)

ln (
ea∗

j + D∗
i

ea∗

i

) ≤ 0, i ∈ G ∩ ∀j ∈ input(i)

ln (
D∗

i

ea∗

i

) ≤ 0, i ∈ D

ln (
T ∗

i

es∗i
) ≤ 0, i ∈ (D ∪ G)

Lwi
W−1

gi
≤ 1, Wgi

U−1
wi

≤ 1, i ∈ G

Ltni
V −1

tni
≤ 1, Vtni

U−1
tni

≤ 1, i ∈ G

Ltpi
V −1

tpi
≤ 1, Vtpi

U−1
tpi

≤ 1, i ∈ G (3.8)

where parameters with a ∗ superscript represent those after an exponential change of variable.

From equation 3.8, we can form the general Lagrangian function [25] by introducing non-

negative Lagrange multipliers to relax each arrival time and slew constraint into the objective

function. Simple bounds on the transistor widths and Vts are not relaxed. For example, for j ∈

input(0), let λA
j0 denote the multiplier for the constraint ln( e

a∗j

ea∗
0

) ≤ 0. For i ∈ G∩∀j ∈ input(i),

let λA
ji denote the multipliers for the constraint ln( e

a∗j +D∗

i

ea∗
i

) ≤ 0, and for i ∈ (D ∪ G) ∩ ∀j ∈

input(i), let λS
ji denote the multipliers for the constraint ln( T ∗

i

es∗
i
) ≤ 0. For i ∈ D, let λA

mi denote

the multipliers for the constraint ln( D∗

i

ea∗
i
) ≤ 0. Finally, let λ be the vector of all the multipliers
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introduced. Then, the general Lagrangian function can be written as:

L(Wg, V tn, V tp, a, s, λ) = α1e
a∗

0 + α2P
∗
leakage(Wg, V tn, V tp, s)

+ α3P
∗
dynamic(Wg, CL, V tn, V tp, s)

+
∑

j∈input(0)

λA
j0 ln

(

ea∗

j

ea∗

0

)

+
∑

i∈G

∑

j∈input(i)

λA
ji ln

(

ea∗

j + D∗
i

ea∗

i

)

+
∑

i∈(D∪G)

∑

j∈input(i)

λS
ji ln

(

T ∗
i

esi

)

+
∑

i∈D

λA
mi ln

(

D∗
i

ea∗

i

)

(3.9)

The Lagrangian relaxation subproblem associated with a particular fixed Lagrange multi-

plier value λ (LRS/λ) is:

LRS/λ : minimize Lλ(Wg, V tn, V tp, a, s)

subject to Lwi
W−1

gi
≤ 1, Wgi

U−1
wi

≤ 1, i ∈ G

Ltni
V −1

tni
≤ 1, Vtni

U−1
tni

≤ 1, i ∈ G

Ltpi
V −1

tpi
≤ 1, Vtpi

U−1
tpi

≤ 1, i ∈ G (3.10)

From the theory of the Lagrangian function, it is known that there exists a vector value of

λ for which the optimal solution of LRS/λ is equal to the optimal solution of the original

PP problem. Hence, if we can find this λ value, then we can find the optimal solution to the

original problem (by solving LRS/λ).

Before we discuss our strategy for finding the correct λ value, we first present a key part of

our algorithm which is largely responsible for the excellent runtime of LARTTE.
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3.2.3 First-Order KKT Necessary Condition For The Lagrangian Function
Solution

For a given Lagrangian function that we are interested in solving, the theory of the La-

grangian tells us that for a particular vector value λ to be the correct, optimal solution mul-

tiplier, the first-order Kuhn-Karush-Tucker (KKT) necessary condition must hold. Under the

first-order KKT condition, the gradient of the Lagrangian function with respect to all variable

parameters must be equal to 0. That is, ∇W ∗

gi
Lλ = 0, ∇V ∗

tni
Lλ = 0, and ∇V ∗

tpi
Lλ = 0 for

1 ≤ i ≤ NG+PO. Also, ∇a∗

i
Lλ = 0 and ∇s∗i

Lλ = 0 for 1 ≤ i ≤ PI+NG+PO. Therefore, in

trying to find out what the correct, optimal multiplier value λ should be, we need only consider

cases where the above conditions are satisfied. This ”filtering” process is the key to dramatic

runtime reduction.

By taking ∇a∗

i
Lλ = 0 and ∇s∗i

Lλ = 0 to the Lagrangian, we obtain the following required

optimality condition on the arrival time and slew constraint multipliers:

∑

j∈input(0)

λA
j0 = α1e

a∗

0

∑

j∈input(i)

λA
ji =

∑

k 6=0∈output(i)

λA
ik · e

a∗

i

ea∗

i + D∗
k

, i ∈ (D ∪ G)

∑

j∈input(i)

λS
ji =

∑

k 6=0∈output(i)

(

λA
ik

ea∗

i + D∗
k

∂D∗
k

∂s∗i
+

λS
ik

T ∗
k

∂T ∗
k

∂s∗i

)

+ α2

∂P ∗
leakage

∂s∗i
+ α3

∂P ∗
dynamic

∂s∗i
, i ∈ (D ∪ G) (3.11)

Note that each line in 3.11 applies to an individual set of components of λ and is independent

to the other lines. For example, if a particular vector value λ∗ is to be deemed a candidate

for the correct, optimal multiplier λ, then all of its outgoing primary output (PO) multiplier

components must sum up to be α1e
a∗

0 . Furthermore, for all gates in D ∪ G, all of their incom-

ing multipliers (from fan-in gates) must sum up to their outgoing multipliers (multiplied by

ea∗i

ea∗
i +D∗

k

). In considering only those values of λ∗ which satisfy equation 3.11 as solution can-

didates for the correct, optimal multiplier λ, our tuning process can significantly cut down on

runtime by avoiding unnecessary computation involving impossible λ candidates.
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Using equation 3.11, we now present our method for solving for the correct, optimal λ

value (and consequently the optimal solution of our original problem as well).

3.2.4 Iterative Multiplier Adjustment for Determining Optimal λ

We employ an iterative, modified sub-gradient method for finding the desired λ vector.

First, we arbitrarily pick a starting lambda value which satisfies equation 3.11. For example,

we can start by assigning each of the λA
j0 to be α1ea∗

0

N
, where N is the number of inputs to sink

node 0. The assignment of all other multiplier components can be done in a similar manner

(in reverse topological order). After forming an initial λ∗ guess, we then iteratively update

λ∗ using a modified sub-gradient approach shown in Table 3.2, line 3, to form a new guess

at every iteration. θk is a step size value which is initialized to 1 and gradually updated over

iterations using a Trust-Region approach [27]. We continue to iterate and make new guesses

for the correct, optimal value of λ until our LRS/λ∗ value converges to that of the PP value.

When this occurs, we will have found our desired multiplier λ, which is just equal to the λ∗ at

the stopped iteration.

3.2.5 Solving LRS/λ in a Generalized Manner

Our LARTTE algorithm terminates when the solution of LRS/λ converges to that of PP .

In order to do this, we must have a method for solving LRS/λ for the optimal (with respect

to the given λ) tunable parameter vector, x. In previous works [7] [11], due to the use of the

Elmore delay model, this procedure had to be carried out in a Gauss-Seidel-like or serialized

manner. The reason is as follows. In the Elmore model, the delay at a node is characterized

as a function of the resistance and capacitance values along the path, not as a function of the

tunable parameters in the circuit (specifically, the widths of the gates). Therefore, the process

of solving for the tunable vector x in LRS/λ cannot be done in one single iteration (in a

generalized manner). This is why in [7] and [11], the authors resorted to a greedy, serialized

approach, where the tunable parameters (xis) are solved in topological order and one-at-a-

time so that after solving for one xi, its corresponding downstream resistance and capacitance
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values can be updated appropriately for the next gate’s xi to be solved correctly. The order-

dependent and serial nature of this solving-procedure makes the tuning process inaccurate and

time-consuming, and this is the key drawback to these previous works.

In this work, we overcome the above drawback by using posynomial-based models in the

LR framework for the first time. Since the posynomials are characterized with respect to only

the tunable parameters of the circuit, LRS/λ is expressed completely in terms of x, and the

entire problem can be solved optimally in a generalized manner (in one single iteration) using

any formal mathematical programming technique. Thus, the serialization/order restriction is

removed entirely in our posynomial-based method, leading to a much more accurate and faster

tuning process. The accuracy, efficiency, and elegance of our generalized solving-procedure is

the key to LARTTE’s performance, and is the main contribution of this work.

We resort to an off-the-shelf solver in L-BFGS-B [28] to solve LRS/λ. L-BFGS-B im-

plements the well-known, Limited-Memory BFGS method [25], which has been proven to

be exceptional for handling large-scale, unconstrained problems. This method belongs to the

class of quasi-Newton methods, which uses a Hessian approximation of the objective function

(instead of the exact Hessian) to compute the Newton search direction for the minimum. How-

ever, unlike the standard BFGS method, the Limited-Memory approach uses only the curvature

information from the most recent iterations to construct the Hessian approximation. This is

beneficial for large problems whose Hessian matrices cannot be computed at a reasonable cost

or are too dense to be manipulated easily. To avoid any confusion, we leave out the internal

details of this method and refer interested readers to [25].

3.2.6 Vt Discretization and LARTTE Summary

Up to now, we have treated Vt as a tunable parameter in <. This was done because LR is

a technique for optimizing continuously-differentiable problems. Obviously, this is a problem

because in practice, there is usually only a limited number of Vt levels available for use. Hence,

in order to rectify this situation, we must discretize our Vt solutions in the end to the nearest

allowable Vt value. For example, if we find that after tuning, one of our transistors has an
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optimal Vt solution value of 0.176V, but we can only choose between a device with 0.24V Vt

and a device with 0.16V Vt, then we would discretize this transistor’s Vt solution to be 0.16V

instead. This discretization step is carried out at the end of the tuning process for all transistors

and their corresponding Vt solutions.

Since the discretization step is a heuristic, the quality/optimality of the solution after apply-

ing discretization seems questionable at first. However, we have empirically found that as long

as the number of Vt levels available for use is around 4 or more, the solution after discretization

will typically be not too far off from the original, un-discretized solution (as it will be shown

in our experimental results section). Hence, our LR technique is still reasonable under mild

assumptions.

A summary of LARTTE is given in Table 3.2.

3.3 LARTTE with Process Variation Guard

Recall that if process variation were not taken into account during the tuning process, then

a ”good” tuning tool will size in such a way that many of the outputs end up having the same

critical arrival time in the end. This in turn creates a high probability that the final delay

value (subject to process variation) will differ from that calculated via static timing analysis,

since any of the critical output’s arrival time can increase from variation. Therefore, due to

inaccurate timing estimates, functional incorrectness can result (ie. from setup and hold time

violations). To improve the chance of high yield, delay variations can be taken into account

during the LARTTE tuning process as follows: First, LARTTE is invoked normally and the

critical-path delay and its corresponding output pin is recorded. Then, using this recorded

information, the same critical output’s arrival time constraint is modified/relaxed to derive a

new PP formulation, which is then subsequently solved by LARTTE again. Thus, we have
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ALGORITHM LARTTE:

Output: optimal gate-sizing and Vt allocation solution

1. k := 1 /* iteration number */

λ := arbitrary initial vector of constraint multipliers satisfying (3.11)

Initialize all optimization tunable parameters

2. Solve LRS/λ by calling L-BFGS-B to minimize Lλ(Wg, V tn, V tp, a, s, λ)

until optimal solution found and then compute a1, . . . , aPI+NG+PO and

s1, . . . , sPI+NG+PO

3. /* Adjust multipliers λ */

for i := 0 to PI+NG+PO do

foreach j ∈ input(i) do

λNEW
ji :=







































λA
ji ∗
(

e
a∗j

ea∗
0

)θk

if i = 0

λA
ji ∗

(

e
a∗j +D∗

i

ea∗
i

)θk

if i ∈ G

λA
ji ∗
(

D∗

i

ea∗
i

)θk

if i ∈ D

λS
ji ∗
(

T ∗

i

es∗
i

)θk

if i ∈ (D ∪ G)

Project λNEW
ji to the nearest point satisfying (3.11)

4. k := k + 1

5. Goto step 2 until the cost functions of PP and LRS/λ converge to within

a specified tolerance

6. Discretize the Vt solutions

7. Solve LRS/λ by calling L-BFGS-B to find the optimal solution

Table 3.2 Algorithm summary for LARTTE
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the following:

minimize α1a0 + α2Pleakage(Wg, V tn, V tp, s)

+ α3Pdynamic(Wg, CL, V tn, V tp, s)

subject to aj ≤ a0, j ∈ input(0), j 6= c

ac ≤ (1.0 + η)a0, c = critical PO, 0 ≤ η ≤ 1

aj + Di ≤ ai, i ∈ G ∩ ∀j ∈ input(i)

Di ≤ ai, i ∈ D

Ti ≤ si, i ∈ (D ∪ G)

Lwi
≤ Wgi

≤ Uwi
, i ∈ G

Ltni
≤ Vtni

≤ Utni
, i ∈ G

Ltpi
≤ Vtpi

≤ Utpi
, i ∈ G (3.12)

It can be seen from equation 3.12 that the only thing that has changed from the original PP

formulation is that the old constraint on the original critical output has been modified/relaxed

by a user-specified ratio, η. This is done to explicitly introduce a margin of separation between

the most critical arrival time and all other outputs’ arrival times. By doing so, the impact of

delay variations can be minimized. The value of η ranges between 0 to 1, with a larger η

leading to a greater margin of separation.

3.4 Experimental Results

We implemented LARTTE in C++ and ran all of our experiments on a 1.0GHz Pentium

4 machine with 1.0Gb of RAM. The stopping criterion of LARTTE was set to when PP and

LRS/λ agreed to within 1.0%. Lower and upper bounds of the transistor width were 0.2µm

and 1.1µm, respectively. For Vt, the lower and upper bounds were 0.14V and 0.26V. VDD

was 1.0V. Input slew ranged from 30ps to 150ps. Four Vt levels were made available for

discretization: 0.14V, 0.18V, 0.22V, and 0.26V. Appropriate activity factors were assigned to

the posynomials throughout the circuit using PowerMill. All SPICE simulations were carried
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out in 0.1µm technology. We conducted our experiments on the ISCAS85 benchmark cir-

cuits, where the number of gates ranged from 214 to 3,512, and the total number of tunable

parameters from 654 to 15,198. Tables 3.3 and 3.4 show the LARTTE optimization results.

To illustrate the convergence property of LARTTE, we show in Figure 3.3 the convergence

sequence for a 12-bit ALU controller. As it can be seen, the duality gap is closing each step

along the way as desired. This behavior was observed in all of our experiments.

In Table 3.3, the ”optimize delay” columns show the maximum delay before and after tun-

ing, with only timing involved in the objective function (α1=1, α2=α3=0). All transistors have

a nominal Vt value of 0.18V. After obtaining the best possible delay value from sizing opti-

mization alone, we then try to optimize the total power consumption subject to that same delay

value. Hence, the solution obtained from tuning the power consumption is guaranteed to have a

critical path delay not exceeding the corresponding delay value shown in the ”optimize delay”

column. For power tuning, the dynamic and leakage power terms were arbitrarily assigned

equal weights. The resulting optimized-power solution from tuning both the transistor width

and Vt are shown in the ”optimize total power” columns of Table 3.4. Compared to the power

consumption of the circuit with delay-tuning only, this shows an average of 58% improvement

in total power reduction. The Tables also show that LARTTE exhibits linear runtime and mem-

ory usage requirement (see Figure 3.4 as well). Lastly, we show in Table 3.4 the leakage power

consumption before and after Vt discretization. As it can be seen, applying Vt discretization

introduces only a trivial amount of error. This suggests that with 4 levels of Vt available, the

discretization heuristic works reasonable well. This is also shown through Figure 3.5, which

analyzes the degree of power reduction which can be achieved as a function of the number of

Vts available for use.

To gauge the effectiveness and runtime of LARTTE, we used a state-of-the-art, general

convex problem solver in SNOPT to solve the same primal problem (with discretization as

well). The runtime results are tabulated in Table 3.4, where it can be seen that our LR method

is over 250x faster. Independently, we verified that our LARTTE solution agreed with the

SNOPT solution to within 1% in all cases.
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Table 3.3 LARTTE results: Part I
Circuit # of # of # of Optimize Delay (ps) Memory

Name Gates Var. Constr. Min. size Sizing % (MB)

nom.-Vt nom.-Vt

c432 214 654 473 1620 1230 24.1 1.0

c499 514 1716 1059 1060 895 15.6 1.5

c880 383 1665 987 1070 872 18.5 1.5

c1355 546 1908 1227 1070 914 14.6 1.5

c1908 880 3315 1781 1500 1220 18.7 2.5

c2670 1193 5397 2903 1860 1520 18.3 3.5

c3540 1169 7446 3824 2170 1800 17.1 4.5

c5315 2307 10656 5932 1900 1590 16.3 6.0

c6288 2416 8016 5120 6070 5170 14.8 5.0

c7552 3512 15198 8011 1520 1250 17.8 8.5

Table 3.4 LARTTE results: Part II
Circuit Optimize Total Power (0.1mW) Leakage Power

Name Sizing Sizing % Runtime (s) Speed Before After

nom.-Vt multi-Vt SNOPT LARTTE up Discretize Discretize

c432 1.25 0.59 52.9 31 5 5.9 7.66e-6 7.67e-6

c499 3.49 1.46 58.3 290 10 29.7 1.71e-5 1.74e-5

c880 3.41 1.35 60.4 341 42 8.1 1.90e-5 1.91e-5

c1355 5.62 2.93 47.9 269 9 29.7 4.43e-5 4.47e-5

c1908 7.22 3.07 57.5 1316 57 23.0 4.21e-5 4.24e-5

c2670 10.7 4.09 61.9 7915 107 74.0 3.93e-5 3.95e-5

c3540 14.7 6.02 58.9 20773 222 93.6 5.44e-5 5.48e-5

c5315 19.8 8.42 57.4 64424 330 195.2 9.28e-5 9.32e-5

c6288 15.8 4.66 70.4 25326 299 84.7 1.85e-5 1.89e-5

c7552 27.8 12.6 54.6 117067 431 271.6 1.35e-4 1.36e-4
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Figure 3.3 The convergence sequence for a 12-bit ALU and controller.

We next investigate LARTTE’s effectiveness of guarding against delay variations. An η

value of 0.5 was used in all of our tests. Shown in Table 3.5 are all the circuit’s critical-path

delay before and after re-invoking LARTTE with the process variation modifications. Also

shown are the next closest output arrival times before and after re-tuning. As it can be seen,

LARTTE successfully creates a distance separation between these two values after re-tuning.

We also show the relationship between η’s value and the resulting max frequency in Figure

3.6(a). For the circuit (c1908) in that figure, it can be seen that increasing the value of η bumps

up the final critical delay value and decreases the maximum operating frequency. However, as

the critical delay value rises, the number of ‘potential’ delay-violating paths directly decreases.

A ‘potential path’ was arbitrarily defined as any non-critical path whose final delay value is

within 10% of the final critical delay value. The tradeoff between max frequency and final

delay variation probability is clear from this figure. Finally, for completeness, we also show

the tradeoff between max frequency and total circuit area in Figure 3.6(b). Area was calculated

by summing all transistors’ widths.
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Table 3.5 Delay Separation Before and After Re-Tuning with Process Variation Modifications

Before Re-Tuning After Re-Tuning

Circuit Name Critical Delay (ps) Nearest Delay (ps) Critical Delay (ps) Nearest Delay (ps)

C432 1230 1165 1279 1165

C499 895 889 968 890

C880 872 847 924 847

C1355 914 914 994 914

C1908 1220 1207 1312 1204

C2670 1520 1519 1593 1520

C3540 1800 1784 1921 1786

C5315 1590 1561 1703 1558

C6288 5170 5170 5582 5170

C7552 1250 1248 1362 1249
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Figure 3.4 The (a) runtime and (b) storage requirements of LARTTE vs. number of variables.

3.5 Conclusion

In this chapter, we presented a novel, effective, and fast way to perform simultaneous gate-

sizing and multiple-Vt assignment using generalized Lagrangian Relaxation and posynomial

modeling. Our technique is practical, versatile, and accurate. We also showed an easy way

to modify the tuning algorithm to directly take process variations into account. This is one

of the key contributions of this technique, along with the ability to reduce leakage through

simultaneous Vt optimization.

3.6 Extension: LARTTE for ASIC Designs

It should be noted that the LARTTE algorithm presented up to now seems to suit full

and semi-custom design flows only, since standard cell issues such as pin unateness, rise

time/transition vs. fall time/transition, and pin-to-pin propagation delay/slew were largely

simplified to the point of trivialness. However, in this section, we show that the LARTTE

formulations can be easily modified to allow the algorithm to work within an ASIC standard

cell flow. However, instead of sizing the width of the transistors within a gate, we are now
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Figure 3.5 Effect of varying the number of Vt levels available on the potential of power
reduction with LARTTE

finding the drive strength instance of the cell instead, which is characterized as a function of

the gate’s input capacitance.

We begin by first making changes to the posynomial-fitting procedure. The posynomial

regression problem remains unchanged, which is repeated here for convenience:

Posyfit: minimize
z
∑

m=1

((

k
∑

j=1

cj

n
∏

i=1

x
αij

i

)

− bm

)2

subject to cj ≥ 0, 1 ≤ j ≤ k (3.13)

Before, we solved this problem by iteratively ”guessing” and fixing the unknown exponents

(αij), then solving for the coefficients (cj) using CFSQP. This strategy is no longer practical

for the ASIC flow, since the sheer size of the standard cell library makes the time requirement of

this guess-and-solve procedure excessive. Instead, what we do now is combine the exponents

and coefficients into one single unknown vector, call it Z, and then let CFSQP solve for the

complete value of Z directly (it should be noted that the number of monomial terms, k, is

still guessed and fixed at the beginning of this procedure). Doing so gets rid of the exponent

guessing step and makes the regression procedure viable once again.
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Figure 3.6 The (a) Number of Potential Delay-Violating Paths Vs. Max Frequency, and (b)
Total Wg Vs. Max Frequency.

Other than the posynomial-fitting procedure, another change that needs to be made to

LARTTE is that the original, nonlinear contrained optimization problem needs to be re-formulated.

Ignoring power and threshold voltage assignment for now, Equation 3.14 shows a new Primal

Problem (PP) formulation which is suitable for the ASIC flow. In this equation, I denotes

the set of primary inputs, N the set of internal gates, and O the set of primary outputs. Also,

Lj and incapj denote the loading capacitance and the input capacitance of gate j, respectively.

From this new Primal Problem, a new Lagrangian Function can be derived as shown in Equa-

tion 3.15. Its KKT conditions follow in Equation 3.16 and 3.17. The subgradient multiplier

adjustment step also gets changed, as is shown in Equation 3.18. Using these new derivations,

Lagrangian Relaxation can be carried out thereafter in exactly the same manner as before to

arrive at an optimal set of input capacitance values for each gate. These values can then be

discretized to the nearest drive strength instance to find the desired optimal cell instance to use

for each gate. Thus, we have shown that LARTTE can be easily modified to fit within an ASIC

design flow.
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minimize arise
sink + afall

sink

s.t. ∀j ∈ O : arise
j ≤ arise

sink

afall
j ≤ afall

sink

∀j∈(N∪O)
∀i∈in(j)∧

i∈(+)unate(in(j))∧
i/∈I

: arise
i + D∗rise

ij (srise
i , Lj, incapj) ≤ arise

j

afall
i + D∗fall

ij (sfall
i , Lj, incapj) ≤ afall

j

∀j∈(N∪O)
∀i∈in(j)∧

i∈(−)unate(in(j))∧
i/∈I

: afall
i + D∗rise

ij (sfall
i , Lj, incapj) ≤ arise

j

arise
i + D∗fall

ij (srise
i , Lj, incapj) ≤ afall

j

∀j∈(N∪O)
∀i∈in(j)∧

i∈(+)unate(in(j))∧
i∈I

: D∗rise
ij (srise

i , Lj, incapj) ≤ arise
j

D∗fall
ij (sfall

i , Lj, incapj) ≤ afall
j

∀j∈(N∪O)
∀i∈in(j)∧

i∈(−)unate(in(j))∧
i∈I

: D∗rise
ij (sfall

i , Lj, incapj) ≤ arise
j

D∗fall
ij (srise

i , Lj, incapj) ≤ afall
j

∀j∈N
∀i∈in(j)∧

i∈(+)unate(in(j))
: T ∗rise

ij (srise
i , Lj, incapj) ≤ srise

j

T ∗fall
ij (sfall

i , Lj, incapj) ≤ sfall
j

∀j∈N
∀i∈in(j)∧

i∈(−)unate(in(j))
: T ∗rise

ij (sfall
i , Lj, incapj) ≤ srise

j

T ∗fall
ij (srise

i , Lj, incapj) ≤ sfall
j

boundlower
j ≤ incapj ≤ boundupper

j (3.14)
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Lλ = arise
sink + afall

sink +
∑

j∈O

λrise
jsink(a

rise
j − arise

sink) +
∑

j∈O

λfall
jsink(a

fall
j − afall

sink) +

∑

j∈(N∪O)

∑

i∈in(j)∧
i∈(+)unate(in(j))∧

i/∈I

λ
rise (+)unate
ij (arise

i + D∗rise
ij (srise

i , Lj, incapj) − arise
j ) +

∑

j∈(N∪O)

∑

i∈in(j)∧
i∈(+)unate(in(j))∧

i/∈I

λ
fall (+)unate
ij (afall

i + D∗fall
ij (sfall

i , Lj, incapj) − afall
j ) +

∑

j∈(N∪O)

∑

i∈in(j)∧
i∈(−)unate(in(j))∧

i/∈I

λ
rise (−)unate
ij (afall

i + D∗rise
ij (sfall

i , Lj, incapj) − arise
j ) +

∑

j∈(N∪O)

∑

i∈in(j)∧
i∈(−)unate(in(j))∧

i/∈I

λ
fall (−)unate
ij (arise

i + D∗fall
ij (srise

i , Lj, incapj) − afall
j ) +

∑

j∈(N∪O)

∑

i∈in(j)∧
i∈(+)unate(in(j))∧

i∈I

λ
rise (+)PI
ij (D∗rise

ij (srise
i , Lj, incapj) − arise

j ) +

∑

j∈(N∪O)

∑

i∈in(j)∧
i∈(+)unate(in(j))∧

i∈I

λ
fall (+)PI
ij (D∗fall

ij (sfall
i , Lj, incapj) − afall

j ) +

∑

j∈(N∪O)

∑

i∈in(j)∧
i∈(−)unate(in(j))∧

i∈I

λ
rise (−)PI
ij (D∗rise

ij (sfall
i , Lj, incapj) − arise

j ) +

∑

j∈(N∪O)

∑

i∈in(j)∧
i∈(−)unate(in(j))∧

i∈I

λ
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∑
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∑

j∈O
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rise (−)unate
jk (3.16)
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∀j ∈ N :
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j ∈ O : λrise
jsink

′
= λrise

jsink + (arise
j − arise

sink)

λfall
jsink

′
= λfall

jsink + (afall
j − afall

sink)

j∈(N∪O)∧
i∈in(j)∧

i∈(+)unate(in(j))∧
i/∈I

: λ
rise (+)unate
ij

′
= λ

rise (+)unate
ij + (arise

i + D∗rise
ij (srise

i , Lj, incapj) − arise
j )

λ
fall (+)unate
ij

′
= λ

fall (+)unate
ij + (afall

i + D∗fall
ij (sfall

i , Lj, incapj) − afall
j )

j∈(N∪O)∧
i∈in(j)∧

i∈(−)unate(in(j))∧
i/∈I

: λ
rise (−)unate
ij

′
= λ

rise (−)unate
ij + (afall

i + D∗rise
ij (sfall

i , Lj, incapj) − arise
j )

λ
fall (−)unate
ij

′
= λ

fall (−)unate
ij + (arise

i + D∗fall
ij (srise

i , Lj, incapj) − afall
j )

j∈(N∪O)∧
i∈in(j)∧

i∈(+)unate(in(j))∧
i∈I

: λ
rise (+)PI
ij

′
= λ

rise (+)PI
ij + D∗rise

ij (srise
i , Lj, incapj) − arise

j )

λ
fall (+)PI
ij

′
= λ

fall (+)PI
ij + D∗fall

ij (sfall
i , Lj, incapj) − afall

j )

j∈(N∪O)∧
i∈in(j)∧

i∈(−)unate(in(j))∧
i∈I

: λ
rise (−)PI
ij

′
= λ

rise (−)PI
ij + D∗rise

ij (sfall
i , Lj, incapj) − arise

j )

λ
fall (−)PI
ij

′
= λ

fall (−)PI
ij + D∗fall

ij (srise
i , Lj, incapj) − afall

j )

j∈N∧
i∈in(j)∧

i∈(+)unate(in(j))
: λ

rise (+)slew
ij

′
= λ

rise (+)slew
ij + T ∗rise

ij (srise
i , Lj, incapj) − srise

j )

λ
fall (+)slew
ij

′
= λ

fall (+)slew
ij + T ∗fall

ij (sfall
i , Lj, incapj) − sfall

j )

j∈N∧
i∈in(j)∧

i∈(−)unate(in(j))
: λ

rise (−)slew
ij

′
= λ

rise (−)slew
ij + T ∗rise

ij (sfall
i , Lj, incapj) − srise

j )

λ
fall (−)slew
ij

′
= λ

fall (−)slew
ij + T ∗fall

ij (srise
i , Lj, incapj) − sfall

j ) (3.18)
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Chapter 4

Sectoral Partial Vector Control (SPVC) with Leakage-Aware
Technology Mapping for Subthreshold Leakage Reduction

The previous chapter presented a technique for optimization of delay and power subject to

process variation uncertainties. In this chapter, we focus further on the reduction of subthresh-

old leakage current/power. We present a novel, low-overhead technique which is similar in

principle to Input Vector Control, but much more effective in practice on large, VLSI circuits.

As was mentioned earlier, the degree of effectiveness one can achieve with Input Vector

Control (IVC) is ultimately bounded by how large a circuit is and by how structured its gates

are arranged. In this chapter, we propose a new technique for leakage power reduction that

aims to overcome these barriers such that the use of input assignment can be practical for

future circuits of high complexity. Our method is called Sectoral Partial Vector Control, or

SPVC, and is coupled with a leakage-aware technology mapping step. As it will be shown in

our results, this method can achieve on average 28.3% leakage savings with SPVC alone, and

69.5% leakage reduction when SPVC is coupled with technology mapping.

The rest of this chapter is organized as follows. Background information is provided in

Section 4.1, followed by the two key contributions of this work, SPVC and leakage-aware

technology mapping, in Sections 4.2 and 4.3. Section 4.4 contains the experimental results. A

summary is given in 4.5.
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4.1 Background

In modern technology, the leakage current is dominated by the subthreshold leakage and

by the gate tunneling leakage. The exact physical characteristics of these currents can be found

in [29]. In this work, only a high-level picture is needed, which is that due to an important

phenomenon known as the stacking effect [21], a CMOS gate’s leakage value is highly sensitive

to the input pattern it sees. For example, the leakage characteristics for several basic CMOS

cells is tabulated in Table 4.1 using SPICE. As it can be seen, Ileakage can vary significantly

between different input patterns. It can be independently verified that this is true in general

for most CMOS cells (the exceptions being inverters and those cells which use inverted inputs,

such as XORs/XNORs). Based on this observation, it’s easy to see why an input vector can be

used to control the leakage state of a circuit.

4.2 SPVC: Sectoral Partial Vector Control

The degree to which a circuit’s leakage power can be controlled via IVC is ultimately

bounded by how large that circuit is. To overcome this limitation, we explore a novel strategy

to use in tandem with input vector control: internal node control.

Our technique is called Sectoral Partial Vector Control, or SPVC, and is divided into 3

phases: sectoring, partial vector identification, and merging. The main approach is as follows:

first, we divide a circuit into smaller and more tractable sub-circuits. Next, we independently

find a low-leakage ”partial” input vector for each sector. Finally, we merge the partial vector

solutions together using internal ”switches”. The end result is a set of control points inserted

throughout the input nodes as well as the internal nodes, thereby guaranteeing a tighter degree

of leakage management than that which is possible with input vector control alone. We will

show how the additional overhead arising from internal node switches can be kept low through

the concept of partial vector control, where we only control a subset of the inputs in achieving

a low-leakage state.

We now explain each phase in more details.
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Table 4.1 Leakage current (e-9) corresponding to different input combinations

INPUTS NAND2 NAND3 NAND4 NOR2 NOR3 NOR4

0000 151 85 58 1293 1929 2552

0001 644 151 85 270 256 248

0010 513 152 85 386 267 253

0011 784 639 151 57 54 53

0100 147 85 381 265

0101 510 151 57 54

0110 496 151 56 54

0111 1174 634 29 29

1000 83 375

1001 144 57

1010 145 56

1011 507 29

1100 143 56

1101 493 29

1110 486 29

1111 1562 20
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4.2.1 First Phase: Sectoring

We first partition a circuit into ”sectors” using the Multilevel Fiducia-Metheyes (MLFM)

algorithm [30]. In MLFM, balanced partitions are sought using as few cuts as possible. This

matches our desired goals, for by maintaining a balance amongst the different blocks, each

resulting sector will be less likely to be too large still. Also, the fewer the cuts, the lesser the

number of internal nodes to merge in the end, and therefore the smaller the overhead.

For MLFM, since balance is defined by the weights on the vertices, we heuristically assign

each vertex or each node a weight proportional to its ”expected leakage”. That is, because

each node is an output of some gate, call it gate Y, and Y will have different leakage values

for different input patterns, then we can assign the weight of that node to be gate Y’s expected

leakage, which is simply defined as that shown in Equation 4.1. However, in order to calculate

this value, each node’s 0 and 1 probabilities must be computed first. Because this is itself an

NP problem, we heuristically ignore the issue of fanout reconvergence for now in order to keep

the problem simple.

∀ i ∈ possible input combinations to gate Y :

ExpectedLeakage(Y ) =
∑

i

Prob(i) × (Ileakage(Y ) | input combination = i) (4.1)

4.2.2 Second Phase: Partial Vector Identification

Once sectoring is complete, the next phase of SPVC is to independently identify a low-

leakage ”partial” vector for each sector. In general, it is possible to be able to control only a

subset of the inputs and yet still achieve decent leakage control. This can best be explained by

the data shown in Table 4.1, where we see that even though different input patterns can lead

to different leakage values, this difference can sometimes be relatively trivial. The reason this

occurs is because of the stacking effect. Due this phenomenon, don’t cares can be exploited

among the similar leakage input patterns to arrive at a low-leakage partial input vector.

To begin partial vector identification, every combinational standard cell in the cell library

must be pre-characterized like that shown in Table 4.1. This is necessary to introduce leakage
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”tiers” for each cell. A leakage tier is defined as a small and distinct range of leakage values.

For example, using Table 4.1, a NAND3 can be characterized to have 3 tiers: one with {’000’,

’001’, ’010’, ’100’}, another with {’011’, ’101’, ’110’}, and the last being {’111’}. In some

cases, a cell will only exhibit 1 leakage tier(i.e., inverters, XORs/XNORs). Therefore, the

leakage state of these cells are relatively insensitive to the input pattern and these cells cannot

really benefit from input assignment.

The way in which a tier is defined or grouped affects how ”partial” the end resulting vector

will be. The looser the grouping(lumping values which do not differ as little as we would have

liked them to be), the more ”partial” the result will be. However, looser groupings will lead to

a solution which is inferior in accuracy of leakage control to a solution which is found using

tighter groupings. It is up to the user to pick the tradeoff point in accuracy vs. partiality. If

the number of ways a circuit was partitioned was large, then it makes sense to group looser

to incur less overhead. However, if only a small number of partitions were used, then one

probably should group tighter to exercise better leakage control. For this work, we found that

3 leakage tiers is typically enough for most of the standard cells.

After characterizing the leakage tiers for every cell, the next step is to introduce a ”Leak-

ageClause” for every gate that has more than one leakage tier, or those gates which are sensitive

to input control. The LeakageClause models the leakage-input dependence of a gate and is for-

mulated as follows: Suppose that gatei was pre-characterized to have N leakage tiers, Ti
1, Ti

2,...

Ti
N . Let the following notation combj

i be used to denote an input combination that corresponds

to leakage tier Ti, with j being just an index to distinguish between different combinations of

the same leakage tier(i.e., comb1
1, comb2

1, and comb3
1 are all input combinations that result in

T1). Then, the general form of a LeakageClausei can be written as follows:
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Figure 4.1 Example Circuit

LeakageClausei =

[

comb1
1 + comb2

1 + ... + combj
1

]

(T i
1)(T

i
2)...(T

i
N ) +

[

comb1
2 + comb2

2 + ... + combj
2

]

(T i
1)(T

i
2)...(T

i
N ) +

.

.

[

comb1
N + comb2

N + ... + combj
N

]

(T i
1)(T

i
2)...(T

i
N ) (4.2)

An important thing to note is that in a LeakageClause, the input combination expressions

combj
i are formed from the previous gates’ logic functions, which are recursively expressed

down to only the input variables. For example, LeakageClause2 for the circuit shown in Figure

4.1 is written as follows (Assuming the same NAND3 tier characterization as before):

LeakageClause2 =

[

(A)(B)(C) + (A)(B)(C) + (A)(B)(C) + (A)(B)(C)
]

(T 2
1 )(T 2

2 )(T 2
3 ) +

[

(A)(B)(C) + (A)(B)(C) + (A)(B)(C)
]

(T 2
1 )(T 2

2 )(T 2
3 ) +

[

(A)(B)(C)
]

(T 2
1 )(T 2

2 )(T 2
3 )

Notice that in the above equation, the first input to the NAND3, X, is implicitly replaced

with (A) in the input combination expressions. This is done to avoid the introduction of new

variables besides those associated with the leakage tiers.
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After deriving the LeakageClause for every gate with more than 1 leakage tier, we then

proceed to AND them all together to form a conjunction called the CircuitLeakage.

CircuitLeakage = Πn
i=1(LeakageClausei) (4.3)

It is easy to see that CircuitLeakage is always satisfiable because the values for the leakage tier

variables Ti
j can be arbitrarily set to match the actual resulting tier states under a given input

assignment.

Once CircuitLeakage is found for the target circuit, we can then construct a weighted, Re-

duced Ordered Binary Decision Diagram (ROBDD) [31] called the FinalBDD to represent

CircuitLeakage. The weights are assigned to the arcs of FinalBDD as follows: For those nodes

associated with the primary inputs, both their THEN and ELSE arcs are arbitrarily assigned a

small(though non-trivial) value. In this work, we chose a value of 30 (The reason for this deci-

sion will be explained soon). For the leakage tier nodes Ti
js, their ELSE arcs all have a weight

of 0 while their THEN arcs have a weight that is proportional to the leakage value represented

by that tier. If a leakage tier is associated with more than one input combination, then its THEN

arc’s weight is computed as the average of those input combinations’ resulting leakage values.

For example, suppose we are dealing with a NAND3 gate. Then, using the same NAND3 leak-

age tier characterization as before, we would assign its T1 node’s THEN arc a weight of 134,

which is the average between 85(’000’), 151(’001’), 152(’010’), and 147(’100’). Similarly, its

T3’s THEN arc would have a weight of 1174(’111’). As an illustration, Figure 4.2 shows the

FinalBDD for the circuit of Figure 4.1 (with no reordering).

From the FinalBDD, a low-leakage partial vector can be determined by tracing a shortest

path from root to 1, where shortest is defined as min(Σ(total path arc weights)) for all possible

paths to 1. Through this path, by examining which arcs are taken from the input nodes, the

values to control the different input signals can be determined. Furthermore, those inputs

which do not need to be controlled can be identified. For example, in Figure 4.2, the shortest

path is (A)(B)(T2
1)(T2

2
)(T3

2
), so the optimal leakage partial input vector is simply AB = {10}.

Notice that input C is not included in the solution because regardless of what C’s value is, as

long as AB = {10}, the leakage state of this circuit will be low.
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Figure 4.2 FinalBDD for Figure 4.1. Solid lines=THEN, dashed=ELSE
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Although it’s not shown in this example, there are times when a shortest path found can be

sub-optimal in the sense that even though the controlled leakage state may be low, the number

of inputs required to be controlled may not be minimized. This is because depending on the

way the node variables are ordered, a path from root to 1 can unnecessarily traverse a node

which in another order may be avoided altogether. For instance, in the ROBDD of Figure

4.2, node A is the first node from root, so it must be traversed no matter what. However, it

is possible that if the tree were ordered in a different way where A is not the first node from

the root, then we could potentially bypass A in tracing a path to 1. Therefore, the order of

nodes can play a large role in determining how partial we can get in our solution. Hence, this

is the main reason why ROBDDs are used in this work, because of their dynamic reordering

capabilities.

Previously, we said that we chose a small yet non-trivial value for the arc weights of the in-

put nodes. The reason for this is that in assigning a small value in relation to the weights on the

tier state nodes, we can allow the path-finding routine to prioritize for leakage reduction first

over input minimization, because the weights on the tier state nodes will dominate in determin-

ing the ”shortest” solution. However, because the weights of these input nodes are non-trivial,

it will allow the number of input nodes traversed in the final solution to be minimized once the

tier state nodes’ values have been fixed.

The partial vector identification process is summarized in Algorithm 1. Some implemen-

tation details (ie. the data structure for LeakageClause) are now clarified. As a sidenote, we

want to point out that this method for determining a partial vector was designed specifically for

SPVC, and not for use by itself. If one were to try to use Algorithm 1 to find a partial vector

for any circuit in general, one would find that often, the size of the ROBDD will grow quickly

out of control. However, because we use this method only for SPVC where the target circuit is

small(a sector), this method is viable.
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Enable automatic dynamic reordering for the ROBDDs;

FinalBDD = the constant 1 BDD;

for all the gates in this circuit do
/* Assume that the output of this gate is node i and its inputs are nodes a, b, ... , m */

LogicBDDi=Functi(LogicBDD(a)..LogicBDD(m));

if current gate has more than 1 leakage tier then
LeakageBDDi = BuildROBDD(LeakageClausei);

Assign arc weights to LeakageBDDi;

FinalBDD =
∏

(FinalBDD)(LeakageBDD);

end

end

BestShortestPath = NULL;

α = user-specified threshold limit;

while α ≥ 0 do
TempPath = ShortestPathTo1(FinalBDD);

if Length(TempPath) < BestShortestPath then
BestShortestPath = TempPath;

end

α = α - 1;

Dynamically reorder FinalBDD in preparation for the next iteration;

end

Return BestShortestPath;
Algorithm 1: Partial Vector Identification
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4.2.3 Third Phase: Merging

After we have identified a low-leakage partial vector for each sector, the last phase in SPVC

is to merge these results together and determine which internal node needs a ”switch”. A switch

is a hardware that outputs a fixed value if the current mode is IDLE. In normal ACTIVE mode,

a switch behaves like a buffer. For example, an AND gate with IDLE’ as one of the inputs

is a switch for 0-forcing. Similarly, an OR gate with IDLE as an input is a mechanism for

1-forcing. Latches/Muxes can also be used as switches.

Switches should not just be inserted at every cut. To reduce the overhead of internal node

control, we only insert a switch at a cut if its input and output values do not match. That is,

consider a cut occurs on node x. Then, x will be an output in 1 sector, let’s say sector A, and an

input in another, let’s say sector B. To determine whether a switch should be inserted at x, we

first find out the logic value that x will have during IDLE while a partial vector is applied on

its parent sector A. Then, we compare this value with that which is required by the child sector

B’s partial vector. If the values match or there is a don’t care, then we don’t need to insert a

switch at x because the values can naturally converge. If they don’t, then a switch is needed at

x to force out its opposite value during IDLE. This is because the value of x needed to compose

B’s partial vector is different from what is normally outputted by A during IDLE. The switch

insertion strategy is summarized in Algorithm 2.

After the switches have been inserted, the original netlist must be modified to re-route

the nets in accordance with which sector needs which internal node value. For those fanout

sectors which required the use of a switch to enforce their partial vectors, their input terminal

is re-routed to the output pin of the appropriate switch. This is shown in Figure 4.3.

Care must be taken when implementing a switch, for we have found that if the switches

were implemented in normal CMOS configuration or as latches/MUXes, then the resulting

leakage consumption of the switches themselves can quickly make up for any reduction benefit

gained from internal node control. Hence, in this work, we used forced-stacking [21] AND/OR

gates as our switches to reduce the internal leakage of the switches. Figure 4.4 shows our 0-

forcing switch. The 1-forcing switch can be derived in a similar manner.
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for all the internal nodes of this circuit do
/* Assume current node is node j and it belongs to sector J */

if current node is not a member of the cutset then
/* current node does not have a fanout gate which belongs to a different sector */

break;

else

for all of the fanout nodes of j which belongs to a different sector do
/* A stores the Boolean output value of node j while sector J sees its optimal

partial vector. If A=2, this value is not fixed under the partial vector */

A = Restrict(LogicBDDj , PartialVector(J));

/* Assume that the current fanout node is node k, which belongs to sector K.

Let B store the required Boolean input value of k for which is needed to form

sector K’s optimal partial vector. Note that if k does not need to be

controlled, then B=2 for don’t care */

B = Extract k’s value from PartialVector(K);

switch A, B do

case A=B or B=2
No internal switch inserted at node k;

case (A=0 or A=2) && B=1
Insert internal switch at k for forcing out a logic 1 during IDLE;

case (A=1 or A=2) && B=0
Insert internal switch at k for forcing out a logic 0 during IDLE;

end

end

end

Algorithm 2: Internal Switch Insertion
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The description of SPVC is now complete. Algorithm 3 summarizes the entire technique.

Compute and store all node’s 0-1 probabilities;

Assign each node a weight proportional to the expected leakage at node;

MLFM(weighted circuit hypergraph);

for each of the sectors do
PartialVectorIdentification(sector);

end

for each node in the cut set do
Perform input-output compatibility analysis. Insert switch if needed and re-route

nets afterwards;

end

Add in the final hardware for controlling the inputs as well;
Algorithm 3: SPVC

4.3 SPVC with Leakage-Aware Technology Mapping

Through SPVC, the circuit size limitation is moderated. However, there is another factor

which strongly determines the potential of input assignment, and that is a circuit’s logical

structure. Therefore, to achieve the highest potential of input control, we propose a technique

to simultaneously apply technology remapping while performing SPVC. Before we begin on

this subject, we assume the reader to be familiar with the basics of technology mapping, in

particular the work done in [32].

4.3.1 Localized Technology Remapping

Since our circuit to apply SPVC on may come from the output of some logic synthesizer

which targets for a classical objective (delay, area, dynamic power), this circuit may have an

initial structure which is poor to input vector control. Therefore, we propose that after SPVC

has completed on the original circuit, we first store the results for future comparison purposes,

then go through each sector and perform ”local” technology remapping on that sector. The
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goal is to avoid remapping an entire circuit all at once and instead work on one sector at a time

so as to limit the effect of errors which were inadvertently introduced during node probability

computations(which we will use again in remapping). With this localized approach, we can

accept some remappings and reject others, thereby achieving a higher level of quality in the

final solution.

The order in which we perform localized remapping is done starting from the sector with

the worst leakage consumption state(while being controlled by its partial vector) and down to

the least leakage-costly sector. The reason for this is because in-between the end of a sector’s

remapping procedure and the start of another’s, some update has to occur like slack changing,

switch insertion/deletion, etc., and this can introduce dependencies which can degrade a future

remapping result for another sector. It is impossible to know which order of remapping leads

to the best result, so we heuristically try to improve on the sector with the worst initial result

first, then gradually work backwards towards the sectors with the better initial results.

4.3.2 DC Curve-Based Remapping Using Expected Leakage

The method that we use to perform technology remapping is actually well-established [32].

It is a DC curve procedure for performing technology mapping under two constraints, delay

and cost (in [32], area was used as the cost metric). Therefore, due to space limitation, we

will skip most of the details on the mapping process and instead focus on how to integrate

simultaneous remapping with SPVC.

Given a target sector for remapping, we follow the exact procedure which is done in the

DC-curve method. For the forward traversal or matching phase, the cost metric we use for

each match at a node is based on the previously-discussed notion of expected leakage, which

is computed on the fly for each match. The backward tree traversal phase picks for each output

node a DC-point that is lowest in total expected leakage and is ≤ the required time of that node.

Our goal is to find a remapping which does not violate the original delay of this mapping (post

SPVC with switches inserted), thereby bounding the final delay penalty to that of the SPVC

phase. The details of the rest of the procedure can be found in [32].
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4.3.3 DAG mapping, Fake Inverter Bubble, and Mixed-Vt Inverters

We performed DAG mapping in this work instead of tree mapping. Our intuition was

that the severing of DAGs into trees can significantly degrade the quality of the final result,

so we stuck with the original DAG and followed heuristics from [32] while performing DAG

mapping.

A heuristic which we found to boost the quality of the final remapping solution significantly

was the use of fake inverter bubbles at every node in conjunction with the inclusion of a mixed-

Vt inverter cell in the mapping cell library. The reason for this is because with fake bubble

insertion, the flexibility in remapping improves substantially, but only if these bubbles are used

in the final covering phase. Unfortunately, because inverters are inherently high in leakage cost,

this will frequently prevent the covering process from choosing a DC-point that uses any more

inverters than what it originally used. Hence, to remove this bottleneck in remapping, a low-

leakage inverter cell must exist in the cell library. However, rather than using a high-Vt inverter

cell, we used a mixed-Vt inverter instead due to the reasons documented in [33]. In short, it’s

because mixed-Vt inverters have a much lower delay penalty than that of a high-Vt inverter, but

they still maintain a decent level of leakage reduction over that of the regular low-Vt version.

4.3.4 Re-identification of a Partial Vector for the Remapped Sector

In remapping, we have found a new circuit structure which is statistically better than before.

However, there are no guarantees when working with statistics, so in order to really ascertain

that the remapped structure should be accepted over the old structure, we perform partial vector

identification again, but this time on the remapped structure, then check to see if the resulting

leakage state of this new structure with its new partial vector is better than the initial stored

leakage state result. If yes, we accept this remapping and modify the netlist before moving on

to the next sector. If not, we reject this remapping decision, keep the original structure for this

sector, and move on to remap the next sector right away.
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4.3.5 Node Updating and Switch Insertion/Deletion Post-Remapping

If a remapped decision is accepted, then we must not only modify the netlist, but we must

also update various timing information on different nodes (requiredTime, arrivalTime) so that

when the remapping for the next sector begins, it will have an up-to-date and correct delay

information to base its final DC-point covering decision on. Furthermore, with each remapping

acceptance, some internal switches could be added or deleted to/from the original netlist. This

is because in using a new remapped structure with its new partial vector, the logic value at

the output nodes of that remapped sector can change from before, and so since we may have

previously inserted a switch for one or more its fanout sectors during SPVC, we must now

check to see if these switches are still needed with the new logic value at that node. Similarly,

we may need to insert new internal switches given that the logic values at the outputs may have

changed.

Previously, we said that during covering, we would pick a DC-point at an output node

which is ≤ the requiredTime of that node. However, because after remapping we may need to

introduce new switches at that node, this can change and possibly violate the delay-constraint

we set out to achieve. Therefore, to accommodate for this source of perturbation, we make a

slight modification of our original method. That is, for each output node, we pick a DC-point

which is ≤ (requireTime - ε), where ε is an delay adjustment factor to take into account possible

insertion of switches post-remapping. Taking ε into account allows us to find a remapped

solution which is guaranteed to not violate the critical delay constraint of the post-SPVC circuit.

If no point on the curve satisfies this constraint, then we keep the original structure.

The entire technology-remapping algorithm has now been described. We summarize it in

Algorithm 4.

4.4 Experimental Results

We conducted our experiments on a machine with 320MB of Ram and running on an Intel

Pentium2 600Mhz processor. 70nm technology was used in our SPICE simulations. All of
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Apply SPVC on the target circuit;

Sort the sectors into remappingQueue;

/* The queue is ordered from worst to best-controlled */

while remappingQueue is not empty do
currentSector = pop(remappingQueue);

generateAllDCMatchPoints(currentSector);

/* Use fake inverters, mixed-Vt, DAG mapping */

pickBestDCCover(matchList, originalDelayConstraints, ε);

newVect = partialVectorIdentification(remappedStructure);

if newLeakageState(remappedStructure, newVect) < originalLeakageState then
modifyNetlist();

insertDeleteSwitches(fanoutSectors);

updateTiming(allNodes);

else
keepOriginalStructure();

end

end

Algorithm 4: Simultaneous Technology Remapping with SPVC
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the SPICE decks were generated as a single whole circuit with the internal switches embedded

within, the pins re-routed, and the global IDLE signal set to TRUE. Two off-the-shelf packages,

a BDD [34] and a MLFM partitioner [35], were used in this work. We implemented all of our

algorithms as well as our own technology mapper in C. The benchmarks used in this work were

taken from the ISCAS and MCNC suites. Our data will show why our technique is scalable

beyond these small circuits.

We begin by tabulating in Table 4.2 the leakage reduction effectiveness of the two tech-

niques presented in this paper. α and ε were picked judiciously. Due to space limitation, only

one arbitrary choice of the sector count is shown. In the third column, we see the degree of

leakage control which can be exerted by SPVC alone. The numbers indicate that on average,

SPVC can achieve 10-30% reduction, which is not significant but certainly not trivial either.

However, what we want to emphasize is the extremely fast runtime of SPVC. The importance

of this speed cannot be stressed enough, especially when taking into account the data shown

in the last two columns. As it can be seen, technology remapping with SPVC is a very pow-

erful technique for leakage reduction, especially considering the fact that no delay penalty is

incurred in upgrading from SPVC. However, because this technique involves finding a partial

vector for each sector twice, its runtime, and therefore its general practicality, critically de-

pends on the speed of SPVC. Therefore, the direct observation Table 4.2 provides for the low

runtime requirement of SPVC boosts the viability of our proposed technique of technology

remapping + SPVC.

No technique is ever perfect, and the drawbacks to our approach is that in inserting the

internal switches, additional overhead is incurred in area, delay (if it’s on the critical path),

and dynamic power (There will also be some perturbations due to the remapping routine, but

this can be either positive or negative). These penalties are now shown in Table 4.3 for the

same set of parameters used in Table 4.2 (# of sectors, α, etc.). Due to space limitation, we

only show the penalties associated with the combination of SPVC and technology remapping

and for only the larger circuits. This penalty naturally encompasses the penalty incurred via

SPVC alone. The values are computed from a well-calibrated library model file, ”lib2.genlib”,
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Table 4.2 Leakage Reduction Results using SPVC with Technology Mapping

ileak # of ileak Run- ileak Run-

Original Sect. SPVC Time SPVC + Time

Circuit (uA) SPVC Tech. SPVC +

(uA) (secs) Remap. Tech.

(uA) Remap.

(secs)

i1 19.73 5 13.18 2 1.96 3

i2 70.66 10 21.51 10 8.69 21

i3 62.70 10 36.22 3 34.10 11

i4 162.34 10 115.09 12 28.55 34

i5 98.21 10 69.25 2 12.19 9

i6 235.78 15 185.27 23 58.49 58

i7 310.97 20 178.86 41 76.07 95

i8 596.69 40 386.90 93 113.88 186

i9 245.02 25 131.44 23 41.11 66

i10 1110.00 80 800.57 190 347.57 511

c432 111.92 10 78.87 3 7.65 10

c499 249.76 10 222.75 9 102.18 27

c880 199.17 10 144.51 16 67.29 48

c1355 252.93 10 224.96 10 99.57 29

c1908 231.58 20 192.97 7 78.79 22

c2670 309.82 20 237.98 20 160.30 85

c3540 530.82 40 398.12 61 187.33 158

c5315 715.96 50 572.99 109 327.26 265

c6288 1430.00 80 1260.00 90 699.83 317

c7552 1080.00 50 928.56 79 537.48 214
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from SIS [36] using the standard load-based delay model. Dynamic power consumption was

found with SPICE over a ten cycle period. As it can be seen, some tradeoffs must be made in

choosing to apply SPVC.

Some heuristics could probably be used to reduce the penalty shown in Table 4.3. For

example, one could try to insert a switch only on the non-critical paths. However, in doing

so, the runtime would be burdened, not the mention the fact that many complications will

be introduced during the remapping process (since each sector will no longer be able to be

remapped independently of each other). Therefore, we leave the strategy as it is.

Next, we examine the impact that varying the number of sectors formed has on the the

quality of the final result. We also study the correlation between the sector count and the

overhead fluctuation. This data is shown in Table 4.4. Only SPVC is shown because its effects

propagate to SPVC + technology remapping. As it can be seen, the behavior reflects what we

expect to see: the greater the # of partitions, the more granular the sub-circuits will be, and

consequently the better the leakage control and runtime will be. The price to pay is that there

will be a greater overhead addition due to more internal switches being inserted.

The data in Table 4.4 back our claim that our technique is scalable for circuits of any size.

This is because by reasoning from the correlation observed between choosing a sector count

and the resulting degree of leakage control effectiveness, we argue that no matter how large

a circuit gets, we can simply introduce more partitions if we need to in order to achieve a

satisfactory level of leakage control. However, as shown in Table 4.4, even though we may

have to introduce more partitions for larger circuits, this does not naturally imply that we will

incur more delay penalty. This is because unlike the area and power penalty, which is directly

proportional to the number of internal switches inserted, the delay is a complex function of

where the switch is inserted (on critical path or not) and how the circuit is partitioned, which

can in turn dictates whether natural convergence of values takes place or not. Therefore, just

because we are partitioning to more sectors doesn’t mean that our critical delay will inevitably

suffer. In fact, as we see from the data, sometimes a larger number of sectors can actually lead

to better performance (with respect to a previously chosen smaller sector count).



66

Table 4.3 Area, Delay, and Dynamic Power Overhead of SPVC

Area Area Delay Delay Dynamic Dynamic

of with of with Power Power w/

Original SPVC Original SPVC of SPVC

Circuit + Tech. Circuit + Tech. Original + Tech.

Remap. Remap. Circuit Remap.

i6 592528 599488 9.11 11.2 7.22e-4 7.34e-4

i7 691360 734512 9.95 12.18 9.28e-4 1.00e-3

i8 1309872 1485264 15.78 19.22 2.23e-3 2.54e-3

i9 629184 747504 16.10 21.29 8.62e-4 1.07e-3

i10 2730176 3126896 49.01 60.78 3.74e-3 4.44e-3

c2670 876496 960016 23.67 30.48 1.41e-3 1.55e-3

c3540 1328432 1556720 40.71 49.28 2.44e-3 2.84e-3

c5315 2072688 2294016 33.53 42.72 3.60e-3 3.99e-3

c6288 4069280 4319840 112.91 137.63 1.43e-2 1.47e-2

c7552 2895824 3163088 36.98 45.47 6.78e-3 7.25e-3
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Table 4.4 Impact of varying the sector count on SPVC

# of ileak Runtime % of % of % of

Internal with of Area Delay Dynamic

Switches SPVC SPVC Increase Increase Power

Added From From Increase

Original Original From

Area Delay Original

Power

50 196 549.68 uA 117 secs 9.4 % 20.28 % 7.14 %

60 210 525.18 uA 104 secs 10.1 % 13.35 % 7.65 %

70 238 500.46 uA 101 secs 11.4 % 21.76 % 8.67 %

80 262 499.01 uA 100 secs 12.5 % 19.38 % 9.54 %

90 275 484.23 uA 96 secs 13.2 % 18.79 % 10.01 %

100 292 463.58 uA 94 secs 14.0 % 21.17 % 10.63 %
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4.5 Summary

In this chapter, we presented two novel techniques in SPVC and leakage-aware technology

mapping for alleviating the size and logic structure limitations of input assignment. Our results

confirm the effectiveness of the two techniques, but some tradeoffs must be made in area, delay,

and dynamic power consumption.



69

Chapter 5

Conclusion

In this thesis, we discussed two of the biggest challenges facing tomorrow’s IC designers

in leakage current/power and process variations. For process variations, a novel, variation-

aware technique for simultaneous gate-sizing and multiple-Vt assignment was proposed based

on generalized Lagrangian Relaxation. For leakage control, a method called Sectoral Partial

Vector Control with leakage-aware technology mapping was introduced. Both proposed works

showed promising results when tested on benchmark circuits. We believe that together, these

two techniques can serve as a comprehensive and effective circuit optimization framework for

designs in future technologies.
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