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Abstract— The soaring clocking frequency and integration density
demand robust and stable power delivery to support tens of millions
of transistor switching. In this paper, we consider the problem of mini-
mizing the area of wires and decoupling capacitors (decaps) for a power
delivery network, subject to the limit on integral of voltage drops. First,
we derive the gradients of constraint function without Tellegen’s theo-
rem. This greatly simplifies the discuss of adjoint sensitivity analysis.
Then, we apply the IEKS method to speed up the sensitivity analysis
over 3 times. Finally, this efficient analyzer is incorporated with the
state-of-the-art nonlinear programming package, SNOPT, to perform
the optimization. Extensive experimental results show that the proposed
method can work efficiently for large power delivery networks.

I. INTRODUCTION

With the ever-increasing clock frequency and the aggres-
sively shrinking feature sizes of high speed electronic cir-
cuits, power delivery is becoming a critical design issue. The
improper design of power distribution system can degrade the
circuit performance, and the reliability. Two basic problems
are the narrowing noise margins caused by voltage drops,
and the undesirable wear-out of metal wiring caused by elec-
tromigration. Given a topology of power delivery network,
several techniques may be used for improving the quality of
power delivery system: varying widths of wire segments, and
adding decoupling capacitors. Wire-sizing has been shown to
be an effective way to reduce the power dip/ground bounces
as well as improving the electromigration. However, it is too
expensive to use wiring sources freely. Consequently, it is
necessary to minimize the area of power grid network [1],
[2], [3], [4]. Most of the existing methods [1], [2] mod-
eled the network as a resistive mesh with different constant
currents consumed by different blocks. The design under
constant currents consumption is not reliable with respect to
current variations caused by time-variant current waveforms.
Those variations can induce higher voltage drops than the
expected. This problem can be remedied by over design-
ing the power delivery network. While, the wiring sources
will be wasted. Although [3] modeled block currents as ran-
dom variables to take into account current variations. They
still did not consider the dynamic effects, capacitive or in-
ductive, which is significant in high performance circuits. [4]
included the dynamic effect and considered the structure of
power delivery circuit as a global mesh feeding local trees.

They applied PRIMA [5] to calculate the transient adjoint
sensitivity over multiple intervals, and a proposed heuristic
optimizer to minimize the area.

In this paper, we first model the power delivery network
as a lumped RLC equivalent mesh circuit and attach a worst
case time-variant current profile at each node. Those current
profiles can be estimated by several current extraction meth-
ods [6], [7]. Then, we use the PWL (piece wise linear) func-
tions to approximate those profiles. After that, we use the in-
tegral of voltage drop below a specific noise margin [8] as the
noise metric function for each node. Later on, we use the sum
of metric function at each node as the measure function, and
develop an efficient adjoint sensitivity analyzer with suitable
model order reduction techniques to calculate the gradients of
measure function with respect to each wire width, and each
decoupling capacitor. Finally, we incorporate the above sen-
sitivity calculation method with the state-of-the-art nonlinear
programming algorithm, SQP (sequential quadratic program-
ming) with SNOPT [9], to minimize the occupied area of
power delivery network.

The rest of the paper is organized as follows. First, the
equivalent circuit model we use for the power delivery net-
work will be introduced, and the adjoint sensitivity of volt-
age drop integral with model order reduction techniques will
be derived in Section II. Then, the formulation of the tuning
problem and optimization method will be presented in Sec-
tion III. Finally, the numerical experiments and conclusion
will be given in Section IV, and V.
II. POWER DELIVERY CIRCUIT AND ITS SENSI-

TIVITY COMPUTATION

The power delivery structure is represented by an equiva-
lent circuit shown in Figure 1. An independent time-variant
PWL waveform is attached at each node to represent the
drawn current of cell, and each wire segment is modeled by
a resistor and inductor connected in series and a ground ca-
pacitor. The RLC parameters of each wire are given by

Rs = ρls/ws (1)

Cs = (βws + α)ls (2)

Ls = γls/ws (3)



Fig. 1. Equivalent Circuit Model of Power Delivery Network

wherels andws are the length and width of each wire seg-
ment, andρ, β, α, γ are the sheet resistance per square, sheet
capacitance per square, fringe capacitance per unit length and
inductance per square of the metal layer.

The behavior of such a system can be expressed by the
MNA (modified nodal analysis) [10] formulation as a first
ordinary differential equation,

G(p)v(t, p) + C(p)v̇(t, p) = Bu(t), (4)

wherev(t, p) is the vector of variables,u(t) denotes a vec-
tor of port voltage sources and internal current sources which
are represented by PWL functions,G(p) is the conductance
matrix,C(p) is the susceptance matrix,B is the input selec-
tor matrix mapping the sources to the internal states, andp
is the vector of tunable parameters which are the widths of
wire segments or decoupling capacitors in our case. Circuit
equations as shown in Equation (4) can be transformed to the
s− domain by Laplace transformation as

G(p)v(s, p) + sC(p)v(s, p) = Bu(s) + Cv(0), (5)

wherev(s,p) andu(s) are the Laplace transform ofv(t, p)
andu(t), andv(0) is the initial condition ofv(t, p).

The integral of voltage drop below a specified noise margin
was first introduced in [8] and was proved to be an efficient
noise metric for the performance of each node in the power
distribution network [11]. This integral according to Figure 2
can be described as

ci(p) =
∫ T

0

max{NMH − vi(t, p), 0}dt

=
∫ T

0

gi(t) (NMH − vi(t, p)) dt, (6)

wherevi(t, p) is voltage drop at nodei, andgi(t) is an unit
pulse within time interval[tsi , tei ].

The most critical node in the power delivery networks is
defined as the largest voltage drop integral over desired time
periodT . Instead of using the voltage drop integral of most
critical node as a metric, we choose the measure function to
be the sum of voltage drop integral at each node.

c(p) =
∑

i

ci(p) (7)

Therefore, we emphasize more on the average global effect
rather than only the effect of most critical node. The goal of

our optimization problem is to use the minimum amount of
area for wiring power distribution network while the sum of
voltage drop integral of whole circuit is less than or equal to
zero.
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Fig. 2. Voltage Drop at Nodei

A. Integral Sensitivity Derivation without Tellegen’s
Theorem

During the procedure of optimization, one is sometimes
interested in the sensitivity of the performance function with
respect to many parameter values. Adjoint sensitivity anal-
ysis [10], [12] is a well known efficient technique to calcu-
late the sensitivities of one performance function with respect
to many parameter values is required. The basis for adjoint
analysis comes from Tellegen’s theorem [13]. We are going
to introduce a more easy way to analyze the sensitivity with-
out using Tellegen’s theorem.

To illustrate the procedure of sensitivity calculation for
functionc(p), we first define a new functionc(t, p) as

c(t, p) =
∑

i

∫ t

0

gi(τ) (NMH − vi(τ, p)) dτ,

=
∑

i

∫ t

0

hi(t− τ) (NMH − vi(τ, p)) dτ, (8)

wherehi(t) = gi(τ − t) for eachi (for example,hi(t) is a
unit plus within time interval[T − tsi , T − tei ] with respect
to Figure 2). Equation (8) can be expressed as the following
vector form

c(t, p) =
∫ t

0

hT (t− τ) (NMH − v(τ, p)) dτ. (9)

whereh(t) is a functional vector with each entryi being
hi(t), andNMH is a vector with each entry equal toNMH .
Equation (9) is a convolution-representation ofc(t, p). After
taking Laplace transformation on its both sides, and utilizing
Equation (5), we have

c(s, p) = hT (s)
(

1
s
NMH −A−1(s, p)b(s)

)
,(10)

wherec(s, p) andh(s) are the Laplace transform ofc(t, p)
andh(t), A(s, p) = G(p) + sC(p), andb(s) = Bu(s) +
Cv(0). Therefore,

∂c
∂pk

= hT A−1 ∂A
∂pk

v

= va
T ∂A

∂pk
v, (11)



wherev is the solution of original MNA equations andva is
the solution of adjoint MNA equations ins− domain,

Av = b (12)

AT va = h (13)

Finally, the sensitivity ofc(p) with respect to an arbitrary
parameterpk is

∂c(p)
∂pk

=
∂c(t, p)

∂pk

∣∣∣∣
t=T

=
∫ T

0

va
T (T − τ)

[
∂G
∂pk

v(τ) +
∂C
∂pk

v̇(τ)
]

dτ (14)

In order to calculate∂c(p)/∂pk, we need to know the
waveforms ofva(t) andv(t) which can be done by apply-
ing trapezoidal integration approximation of Equation (12)–
(13) in the time domain and solving them easily only two for-
ward/backward substitutions at each time step. [14] proposed
a Preconditioned Conjugate Gradient iterative method to effi-
ciently solve MNA equations. However, due to the large size
of power delivery network and tremendous number of MNA
solving needed during the procedure of optimization, it still
consumes a lot of computational times.

B. Integral Sensitivity Computation with Model Order
Reduction Techniques

Model order reduction techniques have shown to be a very
efficient way to speed up the circuit analysis [10], and have
been widely studied and improved over the last decade [15],
[16], [5], [17]. Starting from AWE (Asymptotic Waveform
Evaluation) [15] to PRIMA [5] (Passive Reduction Inter-
connect Macromodeling Algorithm), model order reduction
techniques have been successfully extended to consider in-
ductance effects in a reasonable accuracy. Later, [17] devel-
oped the EKS (Extended Krylov Subspace) method to simu-
late large scale power delivery circuits with many PWL cur-
rent sources. To resolve the source waveform modeling is-
sues, EKS has to perform the moment shifting procedure to
recover the proper moments. Recently, [18] proposed the
IEKS (improved-EKS) method such that it no longer needs
to perform moment shifting for source waveform model-
ing. The major advantage of EKS/IEKS method is their run-
time not proportional to the number of independent sources.
Since the power distribution network contains lots of cur-
rent sources, our sensitivity computation is coupled with the
IEKS-based order reduction approach so that it can handle
the large-scale power delivery circuit.

Given a power delivery circuit with the system Equa-
tion (5), we apply IEKS method to compute the orthonor-
mal basisX of its extended Krylov subspace. Then, we
construct its order-reduced model by projecting the original
system (G,C,B,v) onto this subspace via congruent trans-
formation,Ĝ = XT GX, Ĉ = XT CX, B̂ = XT B, and
v̂ = XT v. The dimension of this new system (Ĝ, Ĉ, B̂, v̂)
is reduced because the rank ofX is much smaller than the
original matrixA. Therefore, the runtime much less than
the original circuit. After that, we set up the system equa-
tions of reduced circuit and utilize the fast simulation method

in [14] to get the waveform of̂v(t). The v̂(t) is projected
back to the original space to provide the approximate solu-
tion, v(t) ≈ Xv̂(t). Details of the IEKS reduction procedure
could be found in [18]. Finally, we usev(t) to construct the
excitation,gi(t), at each nodei of the original system.

We, then repeat the above procedure to compute the solu-
tion, va(t), of adjoint circuit, and plugv(t) andva(t) back
to Equation (14) to get the sensitivity ofc(p) with respect to
each tunable parameterpk.

III. OPTIMIZATION

The problem of minimizing the area of power delivery net-
work by varying the widths of wire segments can be formu-
lated as

minimize
∑

i

liwi

subject to c(w) ≤ 0, (15)

whereli andwi are the length and width of wire segmenti,
w is the vector of wire widths, andc(w) represents the sum
of voltage drop integral.

The optimization engine is based on the state-of-the-art
nonlinear programming technique SQP (sequential quadratic
programming) method with SNOPT [9], [19], and our adjoint
sensitivity analyzer. During the procedure of optimization,
the analyzer continuously simulates the network, computes
its sensitivities by using the method presented in Section II-
B, and provides those sensitivities to the SNOPT-based opti-
mizer.

SNOPT employs a limited memory quasi-Newton approx-
imation [20] to the Hessian of the Lagrangian and augmented
Lagrangian merit function. It uses an active set approach with
only first order information. A modified Lagrangian function
is employed where the algorithm finds the stationary point to
the Lagrangian by solving a sequence of quadratic approxi-
mations. Please refer to [9], [19] for the detail description of
SNOPT.

The above optimization engine can be modified to include
the decoupling capacitors as

minimize µ
∑

i

liwi + ν
∑

j

$Cj

subject to c(w, $) ≤ 0, (16)

where$Cj is the area of decoupling capacitorCj , $ is a vec-
tor of area of decoupling capacitors, andµ, ν are weighting
factors. A tunable decoupling capacitor is attached at each
mesh node, and is initially set to zero. We can apply the
same technique in Section II-B to calculate the gradients of
c(w,$) with respect to these decoupling capacitors and wire
segments. Then, the SNOPT-based optimizer is utilized to
find the minimum weighted sum of the area of wires and the
area of all decoupling capacitors.

IV. EXPERIMENTAL RESULTS

We implement the proposed sensitivity analysis method in
C++ language, and apply the SNOPT as the kernel of our op-
timization engine. All results are performed on a PC with
a 1.4GHz Pentium IV processor. The typical parameters for
each wire segment areρ = 0.022Ω, β = 0.018fF/µm2,



α = 0.040fF/µm, andγ = 1.26pH. The supply voltage is
1 volt, andNMH is equal to 0.9 volt.

Table I lists the runtime of one full integral sensitivity anal-
ysis implemented by the IEKS method or an efficient MNA
solver [14]. The topology of each circuit is mesh, and reduc-
tion order of IEKS method is 14 for all of them. It shows that
integral sensitivity computation based on model order reduc-
tion technique is about 3 times faster than based on the MNA
solver [14]. The tendency that the speed up increases with
larger circuit size is shown.

The error distribution of integral sensitivity analysis based
on the IEKS method is illustrated in Figure 3. The mesh size
is 81×81 (12960 wire segments), and the order of reduction
is 14. It demonstrates that our method is quite accurate. The
amplitude of maximum error is less than5%, and the errors
for 96% wires are within±1%.

Table II represents the results of our optimization engine
for four different mesh circuits without decoupling capac-
itors. The size of these circuits are from 26×41 nodes to
61×66 nodes. The number of nodes, number of wires, and
the minimum wire area of each circuit are listed. The CPU
times are listed in the last column.

Circuit # of IEKS MNA Speedup
Wires (s) Solver (s) (X)

m 10× 10 180 0.201 0.180 0.90
m 30×30 1740 1.563 2.834 1.81
m 70× 70 9660 9.183 23.464 2.56
m 90× 90 16020 15.813 42.531 2.69
m 100× 100 19800 19.228 55.740 2.90
m 200× 200 79600 89.930 277.959 3.09

TABLE I

RUNTIME COMPARISON OFA FULL INTEGRAL ADJOINT SENSITIVITY

ANALYSIS BETWEEN IEKS METHOD BASED AND AN EFFICIENT MNA

SOLVER BASED
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Fig. 3. Error Distribution of Integral Adjoint Sensitivity Analysis Based on
IEKS Method

V. CONCLUSION

An easy way to understand and derive the formula of ad-
joint integral sensitivity for the power delivery network de-
sign without Tellegen’s Theorem is introduced. An efficient
and fast method of analyzing the adjoint integral sensitivity
with model order reduction techniques is developed. Numer-
ical results show that the proposed method can ease the com-
putational load with very small error.

This fast gradient calculating method has been combined

Circuit # of # of Wire Area CPU Time
Nodes Wires (cm2) (hrs)

m 26× 41 1066 2065 0.00545 0.13
m 41× 51 2091 4090 0.01040 1.26
m 51× 51 2601 5100 0.01272 2.13
m 61× 66 4026 7925 0.02036 5.81

TABLE II

RESULTS OFOPTIMIZATION

with a nonlinear optimizer, SNOPT, to efficiently optimize
the power delivery network. Although the experimental re-
sults do not include the decoupling capacitors, they can be
easily added into our optimization engine.
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