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Thermal-ADI—A Linear-Time Chip-Level
Dynamic Thermal-Simulation Algorithm
Based on Alternating-Direction-Implicit

(ADI) Method
Ting-Yuan Wang and Charlie Chung-Ping Chen

Abstract—Due to the dramatic increase of clock frequency
and integration density, power density and on-chip temperature
in high-end very large scale integration (VLSI) circuits rise
significantly. To ensure the timing correctness and the reliability of
high-end VLSI design, efficient and accurate chip-level transient
thermal simulations are of crucial importance. In this paper, we
develop and present an efficient transient thermal-simulation al-
gorithm based on the alternating-direction-implicit (ADI) method.
Our algorithm, thermal-ADI, not only has a linear run time and
memory requirement, but is also unconditionally stable, which
ensures that time step is not limited by any stability requirement.
Extensive experimental results show that our algorithm is not only
orders of magnitude faster than the traditional thermal-simula-
tion algorithms, but also highly accurate and efficient in memory
usage.

Index Terms—Alternating-Direction-Implicit (ADI), design
automation, finite difference methods, thermal simulation,
temperature.

I. INTRODUCTION

DUE TO THE relentless push for high-speed, high-perfor-
mance, and high-component density, power density and

on-chip temperature in the high-end very large scale integra-
tion (VLSI) circuits rises significantly. The 1999 International
Technology Roadmap for Semiconductors (ITRS) shows that
the maximum power and number of metal layers will signifi-
cantly increase for the future high-performance microprocessor
unit (MPU). The characteristics are described in Table I. This
trend shows the importance of thermal issues in VLSI design.
A comprehensive analysis of the thermal effects in high-perfor-
mance VLSI has been discussed recently [1]–[4]. This analysis
shows that the maximum temperature on the chip increases dra-
matically with scaling because of the increase of interconnect
levels, current density, and thermal coupling, as well as the in-
troduction of low- dielectrics.

High temperature not only causes timing failures for both
transistors and interconnects, but also degrades chip reliability.
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For example, the electromigration (EM) effect for the intercon-
nects is exponentially proportional to the temperature, not to
mention electrostatic discharge (ESD) or other effects. For the
next-generation process, the low dielectric constant (low-) ma-
terials will exaggerate the thermal effects because of their low
thermal conductivity. To effectively analyze the thermal distri-
bution and locate the hot spots, chip-level thermal analyses are
of crucial importance. Furthermore, for the finite thermal con-
ductivity of the complicated packaging problem, the uniform
heat distribution does not guarantee the uniform temperature
profile. Thus, it is valuable to know the temperature profile and
hot spots, not only for the steady state, but also the transient
state.

Several approaches have been proposed to perform thermal
analysis [5]–[7]. However, due to the complexity of solving the
large-scale matrix, the existing direct matrix-solving algorithms
suffer from superlinear run time and memory consumption for
large-scale problems. In this paper, we propose an algorithm
using the alternating-direction-implicit (ADI) method [8], [9]
to simulate the temperature profile. Our method, thermal-ADI
is not only unconditionally stable, but also has a linear run time
and memory requirement. The experimental results show orders
of run-time improvement over the traditional methods.

The remainder of this paper is organized as follows. Thermal-
simulation physics is discussed in Section II. Section III presents
an overview of the numerical formulation of the heat transfer.
Section IV introduces the ADI method in our simulation. The
implementation and experimental results are presented in Sec-
tion V, followed by the conclusion in Section VI.

II. THERMAL-SIMULATION PHYSICS

As shown in Fig. 1, the temperature distribution in a chip is
governed by the following partial differential equation of heat
conduction from the law of energy conservation [10]:

(1)

subject to the following thermal boundary conditions:

(2)

where is the time-dependent temperature at anyis the
density of the material, is the specific heat, is the thermal
conductivity, is the heat energy generation rate, is the
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TABLE I
ITRS: TREND OF THEMPU TECHNOLOGY REQUIREMENTS: NEAR TERM (1999–2005)AND LONG TERM (2008–2014)

Fig. 1. Conservation of energy and the heat-conduction equation. The
one-dimensional system is shown on the right-hand side, and the heat equation
derived by energy conservation is shown at the bottom. The conduction heat
into the system isqj = �[�A(@T=@x)] . The conduction heat out of the
system isqj = �[�A(@T=@x)] . dE=dt is the change rate of
energy stored inside the system.G is the rate of energy generation inside the
system.

heat-transfer coefficient on the boundary surface of the chip,
is an arbitrary function on the boundary surface,

and is the differentiation along the outward direction
normal to the boundary surface.

In general, thermal conductivity is dependent on the
position and temperature. The heat-generation rate arises
from the power consumption in gates and power/ground/clock
interconnects. The power consumption of gates is caused by
short-circuit and leakage currents, and the power consumption
of power/ground/clock interconnects is generated by self-gen-
erating. The energy generation rate in the interconnects can
be expressed as [6], where is the rms current
density, and is the temperature-dependent resistivity of the
interconnects.

Note that the thermal time constant of the heat conduction
is orders larger than the clock cycle, which means that the
temperature variation caused by transient currents is small.
Thus, the average power in one or several periods are used
in the heat-generation rate defined above to simulate the
transient temperature profile. The full-chip temperature profile
is supposed to become stable when the thermal steady state is
reached after enough time. There are three different situations
for the boundary conditions.

• Specified Temperature
The temperature is prescribed along the boundary sur-

face, i.e.,

This is the boundary condition of the first kind.

• Heat Flux
The specified heat flux along the boundary surface can

be expressed as

where is the heat flux on the boundary surface. This
is the second kind of boundary condition. For the adiabatic
boundary condition, we have .

• Convection Boundary Condition
The heat transfers from the considered boundary sur-

face to the ambient by convection can be expressed as

where is the ambient temperature, andis the equiv-
alent heat-transfer coefficient. This is the boundary condi-
tion of the third kind.

Section III shows the discretization process.

III. FINITE-DIFFERENCEFORMULATION OF THE

HEAT CONDUCTION

The two-dimensional (2-D) heat-conduction equation can be
rewritten from (1) as

(3)
where . This equation is a second-order parabolic
partial differential equation. There are two steps to build the fi-
nite-difference method. The first step to establish the finite-dif-
ference method of the partial differential equation is to discretize
the continuous space domain into a mesh with a finite number of
grid points. As illustrated in Fig. 2, the temperature at
each point in the chip will be replaced by ,
which will be denoted as for the remainder of this paper.
The first-order partial derivative of with respect to is con-
verted to the following expression by the forward-difference
representation:

where the truncation error is . Similarly, the central-dif-
ference representation of the second-order partial derivative of

with respect to can be expressed as
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Fig. 2. Finite-difference mesh on thex–y plane.

Fig. 3. Illustration of the ADI method.

where the truncation error is , and
.

The next step is to consider the time-marching problem for
the finite-difference equations. Since (1) comes from the law
of energy conservation, it can be explained physically as the
increasing rate of the stored energy in a control unit volume
being equal to the net rate of energy transferring into the con-
trol volume and the generation rate of heat energy in the con-
trol volume. By applying the forward difference with time on
the left-hand side of (3), and replacing the space-domain ap-
proximation terms on the right-hand side, we have the following
expression:

(4)

The term on the left-hand side in (4) relates to the energy stored
from time step to in the control unit volume. However,
during the time period from to , what time step will be
used to update the terms on the right-hand side relating to the
net rate of energy transferring into the control volume? There
are three choices of time marching in the terms expressed with
question marks in (4) [11], [12].

Fig. 4. ForStep I, thex-direction is implicit and they-direction is explicit. For
eachj, there areI + 1 equations corresponding toI +1 points. Note that each
temperature pointT at valuej is related to two unknownsT and
T , which introduces a tridiagonal matrix for eachj. Step IIhas a similar
process toStep I.

Fig. 5. Boundary conditions.

• Simple Explicit Method
Applying the explicit update on the right-hand side of

(4) at time step , we get

(5)

Note that there is only one unknown in each equation with
respect to point ( ). Thus, there is no matrix inversion
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TABLE II
DIFFERENCEEQUATIONS OF THEPEACEMAN–RACHFORD METHOD ON THEBOUNDARY POINTS

Fig. 6. Flowchart of the thermal-ADI simulation.

needed. The truncation error is .
The stability constraint can be described as follows:

(6)

This constraint restricts the size of the time stepfor the
given space increment and .

• Simple Implicit Method
Applying the simple implicit update on the right-hand

side of (4) at time step, we get

(7)

There are five unknowns in each equation at point ().
This approach involves large-scale matrix inversion, and
the truncation error is . However,
the advantage of the method is that there is no restriction
on the step size because of the unconditional stability.

• Crank–Nicolson Method
Crank and Nicolson developed another method by

taking the average of the simple explicit update and the

Fig. 7. Three different situations of the layout extraction.

simple implicit update on the right-hand side of (4). Thus,
they obtained

(8)
There are five unknowns in each equation at point ()
for the time step at . The Crank–Nicolson method
not only has the best accuracy with the truncation error

, but also unconditional stability.
Thus, the difference equation of the heat conduction de-
rived from the Crank–Nicolson method can be expressed
as follows:

(9)

where and .
However, there are some difficulties for solving the above

equations. Considering a 2-D mesh with size by ,
the number of variables needed for this system is

, which requires a matrix with size to store
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Fig. 8. Run-time comparisons of the Crank–Nicolson, the Douglas–Gunn, and Peaceman–Rachford methods.

the coefficients. To solve the equations byLU decompo-
sition or Cholesky decomposition, the run-time and memory re-
quirements are superlinear even with sparse matrix techniques.

IV. ADI M ETHODS

Since the Crank–Nicolson method is computationally inten-
sive, Peaceman and Rachford [8] and Douglas and Gunn [9] de-
veloped the ADI method to overcome this difficulty. Basically,
the ADI method is a process to reduce the two- or three-dimen-
sional problems to a succession of two or three one-dimensional

problems, as shown in Fig. 3. Two detailed approaches are dis-
cussed as follows.

A. Peaceman–Rachford Method

First, rearranging (8) and having the following expression:

(10)
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Peaceman and Rachford proposed an ADI method to solve the
above equations by two steps.

• Step I

(11)

• Step II

(12)

This algorithm completes the time step fromto with
two sub-time steps: from to and from to

. The detailed process is shown in Fig. 4. InStep I, it applies
the implicit update in the -direction and the explicit update in
the -direction. For each value, there are equations for
the corresponding points , where . Since

each temperature point is related to two temperature

points and , the coefficient matrix is in tridiag-
onal form, which can be easily solved with linear run time. In
Step II, it applies the implicit update in the-direction and the
explicit update in the -direction similar toStep I.

The detailed difference equations inStep Ifor each in (11)
can be derived as follows:

(13)

Similarly, the difference equations inStep IIfor each in (12)
can be expressed as

(14)

Now, we can reduce the 2-D problems into a succession of
two one-dimensional problems by the Peaceman–Rachford
ADI method. For every one-dimensional problem, the tridiag-
onal matrix is solved by the Thomas algorithm [11] with time
complexity .

B. Douglas–Gunn Method

Douglas and Gunn developed another general ADI method
that is unconditionally stable and second-order accurate. As
shown in [9], (8) can be rewritten as

(15)

According to the Douglas–Gunn method, (15) is solved by two
sub-time steps.

• Step I

(16)

TABLE III
RUN TIME OF THE CRANK–NICOLSONPEACEMAN–RACHFORD,

AND DOUGLAS–GUNN METHODS

• Step II

(17)

Since the Douglas–Gunn method uses a similar ADI method
to the Peaceman–Rachford method, we will ignore the detailed
discussion about the time marching. After derivation, the differ-
ence equations inStep Ifor each value are as follows:

(18)

The difference equations inStep II for each value are as
follows:

(19)

Similarly, the above tridiagonal equation sets can be solved with
a linear run time.

Consider a given mesh with size .
In Step I, there are values of , and each takes time

to solve the tridiagonal system. Therefore, the run time
is for a complete ADI iteration. The
time complexity of the thermal-ADI method is then

, where is the iteration number to reach steady state.
This analysis means that the thermal-ADI method is linear with
respect to the total number of nodes. In Section IV-C, we will
consider the boundary conditions.
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Fig. 9. Transient simulation results of the Crank–Nicolson, Douglas–Gunn, and Peaceman–Rachford methods at a point in the chip.

C. Boundary Conditions

The difference equations of heat conduction by the
Cranck–Nicolson method in (9) for
and only provide
algebraic equations, but contain unknown
temperature nodes . Similarly, the difference equations
for the Peaceman–Rachford method and the Douglas–Gunn
method in (13) and (14) and (18) and (19), respectively, need
two extra equations for eachor value. Hence, the points
on the boundary conditions are needed to make the number of
equations equal to the number of unknowns. Suppose that we
have the following boundary conditions:

at

at

at

at (20)

where , , , and are the equivalent heat-transfer
coefficients calculated from the equivalent thermal resistance
on the boundary , , , and , respectively,
and is the ambient temperature.

In order to achieve the second-order accuracy, the central-dif-
ference approximation will be used to discretize the boundary
conditions. First, we introduce the virtual temperature nodes

, , , and by expanding the region with
to the left and right and with to the bottom and top, as

shown in Fig. 5, and then apply the central-difference approxi-

mation to discretize the boundary condition, e.g., at and
time step in (20). We then have

at
(21)

Thus, the virtual point can be expressed as

(22)

The other virtual points , , and can be
derived via the same way. These derived virtual points can then
be used to replace the virtual points occurring on the boundary
points in the difference equations. For example, the difference
equations of the Peaceman–Rachford method at points (0,) in
Step Ihave the expression

(23)

The virtual point in the above equation can be replaced
by the expression in (22), and then the difference equations of
Step Iat points (0, ) for the boundary conditions are

(24)

where and .
The difference equations of the Peaceman–Rachford method

on the boundary , , and can be obtained
similarly and are shown in Table II. The difference equations
on the boundary for the Crank–Nicolson method and the Dou-
glas–Gunn algorithm can be derived similarly.
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Fig. 10. Douglas–Gunn method is unconditionally stable. Since the values exceed the criteria value 0.5, the results are still stable rather than oscillating.

Fig. 11. Errors of the Douglas–Gunn method compared to the Crank–Nicolson method at time step 1000, as shown in Fig. 10.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The flowchart of the transient thermal simulation by the ADI
method is shown in Fig. 6. The main features of implementation
are as follows.

• The core part of the thermal-ADI is a fast 2-D transient
thermal simulator. The first step for the thermal simulation
is to partition the chip into a mesh, and choose the size of

, , and . The second step is to extract the layout of

transistors and metal wires from circuits. There are three
situations of layout extraction, as shown in Fig. 7. The
simulator reads the given circuit descriptions, the coordi-
nates of the gates, metal wires, and power/ground/clock
interconnects for thermal simulation, and then calculates
the information at each node on the mesh according to the
physical parameters at that point. Finally, it iteratively cal-
culates the temperature at each node by the ADI method
and outputs the temperature profile.
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Fig. 12. Comparison of memory usages of the Crank–Nicolson, Douglas–Gunn, and the Peaceman–Rachford methods.

• We use the band structure to implement the
Crank–Nicolson method in order to reduce the run
time and the memory usage. Therefore, the chip with
mesh points , we need a matrix
with size rather than .

The thermal-ADI simulation was implemented with C
language, and was executed on an Alpha workstation with dual
SLOTB 667-MHz Alpha 21264 processors.

The run-time comparison of the Crank–Nicolson, the
Peaceman–Rachford, and the Douglas–Gunn methods is shown
in Fig. 8 and Table III. All the methods are tested with 500

time iterations. As can be seen in Fig. 8, the run time of the
Douglas–Gunn and Peaceman–Rachford methods is linearly
proportional to the number of nodes, as shown with the node
number up to 10. On the other hand, the run time of the
Crank–Nicolson method increases dramatically. Note that the
scale in the -axis is logarithm in the top figure.

The temperature of transient thermal simulation at a random
chosen point is shown in Fig. 9. This is done by a 100100
mesh with 1000 time steps. The difference of the Douglas–Gunn
method compared to the Crank–Nicolson method is less than
0.1%, and the difference of the Peaceman–Rachford method
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TABLE IV
MEMORY USAGES OF THECRANK–NICOLSON, PEACEMAN–RACHFORD,

AND DOUGLAS–GUNN METHODS

compared to the Crank–Nicolson method is 2.25%. The tran-
sient temperature curve of the Douglas–Gunn method is very
close to the curve of the Crank–Nicolson method.

In order to test the property of unconditional stability, the
stability constraint in (6) was simulated from 0.4 to 20, as
shown in Fig. 10, where 1/2 is the stability limit. As can be ob-
served in Fig. 10, the Douglas–Gunn method is unconditionally
stable because there is no oscillation with . Fig. 10
also shows that the larger of the Douglas–Gunn algorithm
turns out to have the bigger deviation away from the curve of
the Crank–Nicolson method.

The errors of the Douglas–Gunn method are shown in Fig. 11
with different at time step 1000. Here, we only change the
value of in while keeping the other factors fixed. The errors
increase with respect to thevalue.

As illustrated in Fig. 12 and Table IV, the memory usages of
the Douglas–Gunn and Peaceman–Rachford methods are lin-
early proportional to the number of nodes up to 10. However,
the memory usage of the Crank–Nicolson method increases dra-
matically. This traditional method using a lot of memory space
limits the simulation size of the problems.

VI. CONCLUSIONS

An efficient thermal-ADI algorithm for transient thermal
simulation has been developed. The unconditional stability
and a linear run-time and memory requirement have been
demonstrated. The numerical simulation has also shown that
the thermal-ADI algorithm not only speeds up the run-time
orders of magnitude over the Crank–Nicolson method, but also
reduces the memory usages. The error of the Douglas–Gunn
algorithm can be reduced to 0.1% with a suitable choice of
and time step.
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