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Thermal-ADI—A Linear-Time Chip-Level
Dynamic Thermal-Simulation Algorithm
Based on Alternating-Direction-Implicit

(ADI) Method

Ting-Yuan Wang and Charlie Chung-Ping Chen

Abstract—Due to the dramatic increase of clock frequency
and integration density, power density and on-chip temperature
in high-end very large scale integration (VLSI) circuits rise
significantly. To ensure the timing correctness and the reliability of
high-end VLSI design, efficient and accurate chip-level transient
thermal simulations are of crucial importance. In this paper, we
develop and present an efficient transient thermal-simulation al-
gorithm based on the alternating-direction-implicit (ADI) method.
Our algorithm, thermal-ADI, not only has a linear run time and
memory requirement but is also unconditionally stable which
ensures that time step is not limited by any stability requirement.
Extensive experimental results show that our algorithm is not only
orders of magnitude faster than the traditional thermal-simula-
tion algorithms, but also highly accurate and efficient in memory
usage.

Index Terms—Alternating-Direction-Implicit (ADI), design
automation, finite difference methods, thermal simulation,
temperature.

. INTRODUCTION

For example, the electromigration (EM) effect for the intercon-
nects is exponentially proportional to the temperature, not to
mention electrostatic discharge (ESD) or other effects. For the
next-generation process, the low dielectric constant @¢gpwa-
terials will exaggerate the thermal effects because of their low
thermal conductivity. To effectively analyze the thermal distri-
bution and locate the hot spots, chip-level thermal analyses are
of crucial importance. Furthermore, for the finite thermal con-
ductivity of the complicated packaging problem, the uniform
heat distribution does not guarantee the uniform temperature
profile. Thus, it is valuable to know the temperature profile and
hot spots, not only for the steady state, but also the transient
state.

Several approaches have been proposed to perform thermal
analysis [5]-[7]. However, due to the complexity of solving the
large-scale matrix, the existing direct matrix-solving algorithms
suffer from superlinear run time and memory consumption for
large-scale problems. In this paper, we propose an algorithm
using the alternating-direction-implicit (ADI) method [8], [9]
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Il. THERMAL-SIMULATION PHYSICS

transistors and interconnects, but also degrades chip reliability. OT(7,1)
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TABLE |
ITRS: TREND OF THEMPU TECHNOLOGY REQUIREMENTS NEAR TERM (1999-2005)ND LONG TERM (2008-2014)
Year [ 1999 ] 2000 | 2001 ] 2002 [ 2003 ] 2004 | 2005 ] 2008 | 2011 [ 2014
Technology Node(nm) 180 - - 130 - - 100 70 50 35
Maximum Power (W) 90 100 115 130 140 150 160 170 174 183
Clock(MHz) 1200 | 1321 | 1454 | 1600 | 1724 | 1857 | 2000 | 2500 | 3004 | 3600
# of wiring levels 7 7 7 8 8 8 9 9 10 10
Current Density (A/cm?) with wire at 105°C | 5.8¢5 | 7.1e5 | 8.0e5 | 9.5¢5 | 1.1e6 | 1.3e6 | 1.4e6 | 2.1e6 | 3.7¢6 | 4.6e6

Unit Element 1-D Flow of Thermal Energy e Heat Flux
= The specified heat flux along the boundary surface can
Badiic be expressed as
dt
L OT(E)
dl.= it W) =5, =
2(AAX) whereg,, is the heat flux on the boundary surfageThis
is the second kind of boundary condition. For the adiabatic
—Ax —> AKX o boundary condition, we havg, = 0.
) ) 5 » Convection Boundary Condition
T T T i .
P(AAX)CPB—= [’ﬁ“g‘].\-ﬂ\- _[KAB_]"' + g(AAx) The heat transfers from the cpn3|dered boundary sur
— ! x | x — faces; to the ambient by convection can be expressed as
L 9x+Ax 9 IT (7, t
di Sy gy Y LA e S

07’Li
Fig. 1. Conservation of energy and the heat-conduction equation. The ; ; f N
one-dimensional system is shown on the right-hand side, and the heat equation whereT, is the ambient temperature, anls the equiv

derived by energy conservation is shown at the bottom. The conduction heat ~al€Nt heat-transfer coefficient. This is the boundary condi-

into the system ig|, = —[xA(8T/dx)].. The conduction heat out of the tion of the third kind.

system isg|ssn. = —[KA(OT/0x)]osa.. dE/dt is the change rate of  gaction |1 shows the discretization process.
energy stored inside the syste@.is the rate of energy generation inside the

system.

Ill. FINITE-DIFFERENCE FORMULATION OF THE

heat-transfer coefficient on the boundary surface of the chip, HEAT CONDUCTION

fi(7,,,t) is an arbitrary function on the boundary surfage The two-dimensional (2-D) heat-conduction equation can be
and 9/0n; is the differentiation along the outward directiorrewritten from (1) as

normal to the boundary surface. T (x,y,1) T (z,y,t) PT(z,y,t) 1
In general, thermal conductivity(", T') is dependent on the o YT gz @ ayg — + pTQ(lU Y, 1)
position and temperature. The heat-generationg@te ) arises ) P (3)

from the power consumption in gates and power/ground/clogiere = r/pc,. This equation is a second-order parabolic
interconnects. The power consumption of gates is caused fyttial differential equation. There are two steps to build the fi-
short-circuit and leakage currents, and the power consumptigge-difference method. The first step to establish the finite-dif-
of power/ground/clock interconnects is generated by self-g&@rence method of the partial differential equation is to discretize
erating. The energy generation rate in the interconnects G continuous space domain into a mesh with a finite number of
be expressed ag’,; - 12,[6], where J., is the rms current grid points. As illustrated in Fig. 2, the temperatdter, y, ¢) at
density, andR, is the temperature-dependent resistivity of thgach point in the chip will be replaced BY(iAz, jAy, nAt),

interconnects. _ ~which will be denoted a§7*; for the remainder of this paper.

~ Note that the thermal time constant of the heat conductigihe first-order partial derivative 6f with respect tar is con-

is orders larger than the clock cycle, which means that thgrted to the following expression by the forward-difference
temperature variation caused by transient currents is smgdlpresentation:

Thus, the average power in one or several periods are used o7 Tn T _n

in the heat-generation rate defined above to simulate the == |» — 2L "4 | O(Ag)n ZH 07
transient temperature profile. The full-chip temperature profile ~ 97 i Az Az

is supposed to become stable when the thermal steady stathere the truncation error i9[Az]. Similarly, the central-dif-

reached after enough time. There are three different situatidagence representation of the second-order partial derivative of

for the boundary conditions. T with respect tor can be expressed as
 Specified Temperatgre _ T T 2T+ T L O(AR)
The temperature is prescribed along the boundary sur- 92 i (Az)? z
face, i.e., n n n
%Ti+1,j — 2T + Ty
T(F/ t) = fz(Fs t)' (Aw)2
s

This is the boundary condition of the first kind. (Az)?
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Fig. 4. ForStep | thez-direction is implicit and they-direction is explicit. For

eachy, there ard + 1 equations corresponding fot 1 points. Note that each

Fig. 2. Finite-difference mesh on they plane. temperature poinlf;**/* at valuej is related to two unknown&,*"'/* and

T '/?, which introduces a tridiagonal matrix for eagtStep llihas a similar

process tdstep |

Step 11:
x-direction explicit
y-direction implicit Virtual Points T, i=0...I

Virtual Points Virtual Points
T, T,
0. j=0...]
Step I:
x-direction implicit
y-direction explicit
Fig. 3. lllustration of the ADI method. (I)
where the truncation error i9[(Az)?], and621™ = 17" ; —

217 + T -

The next step is to consider the time-marching problem fc
the finite-difference equations. Since (1) comes from the la\
of energy conservation, it can be explained physically as tr
increasing rate of the stored energy in a control unit volum
being equal to the net rate of energy transferring into the col
trol volume and the generation rate of heat energy in the col
trol volume. By applying the forward difference with time on

the left-hand side of (3), and replacing the space-domain a Boundary
proximation terms on the right-hand side, we have the followiny
expression: Fig. 5. Boundary conditions.
Ti?fl - 17 62T" 52" 1
AL Y Ay + a2 + e, 0" 4) « Simple Explicit Method

Applying the explicit update on the right-hand side of

The term on the left-hand side in (4) relates to the energy stored  (4) attime step:, we get

from time step: ton + 1 in the control unit volume. However, ntl . ) o

during the time period from to n + 1, what time step will be T -1 _ o | =T n &y T N R )
used to update the terms on the right-hand side relating to the At (Az)?  (Ay)? pCp i

net rate of energy transferring into the control volume? There

are three choices of time marching in the terms expressed with  Note that there is only one unknown in each equation with

question marks in (4) [11], [12]. respect to pointi( 7). Thus, there is no matrix inversion
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TABLE I
DIFFERENCEEQUATIONS OF THEPEACEMAN—RACHFORD METHOD ON THE BOUNDARY POINTS

Step 1
ntl ntl .
2+ 2rz,80,3)T0,;r2 - 2TzT1;2 =ryT§ -1+ (2 = 2ry)T5; + 1410541 + 27270z + ﬁ—ctpgo,j

—QTITI 1 g 2+ (24 QTI,BII)T] =1y TT 51 + (2= 2ry)T7; + 1y T1j 41 + 27271z + ﬁ_ctpg”j

Step II
n n+i n41
(2 + 27y oy ) T75 Y = 2r, T = ro T +2 2+ (2= 20T 2 + 1Ty % + 2ryToy + 5o i0

. n +1 +1
—=2r T2 + (24 2ry By )T = rzT"+2 + (2= 2m0)T, 2 A T + 20y oy + 5 Gid

where
AzhosToo .02 AzhipToo Iz | AyhoyTos 0y . PN
Top = TR0t ppp = SRR gy = S gy =

. . Ayh
Boo = (14 Bzhoz). g = (14 B2hiz), gy, = (14 280y, g, = (14 ZL20v)

Extract of Power/ (a) (b) (c)
Ground/Clock Bus
(i.j+1) (ij+1) (ij+1)
- |

ﬂ »-—
) Si m-]eat Souree Si  Heat Sourcd et
L Average Power l Circuit Layout

Density Estimation |
ﬂ ﬂ (D) [ ) [+t (40 | @) 08 (-1 | ) |+10)

(i.j-1) (i.j-1) (ij-1)

Boundary
Conditions | =

: 1
i
: Kernel of :
: 2D Thermal-ADI | — Fig. 7. Three different situations of the layout extraction.
ﬁﬁ I Simulator !
ysical | 1 ! . . . . i
| Parameters | I | simple implicit update on the right-hand side of (4). Thus,
| — ] .
------------ they obtained
Fig. 6. Flowchart of the thermal-ADI simulation. Tﬂji-l _ngj 5§Tn+1 +5;172Tn N 5szn+1 _}_53}2Tn 9ii
= —_—.

) At 2(Ax)? 2(Ay)? PCp
needed. The truncation error @[(At), (Az)?, (Ay)?]. ®)
The stability constrainy can be described as follows: There are five unknowns in each equation at poinf)(

1 1 1 for the time step ab + 1. The Crank—Nicolson method

v = alt 7 T 2] =9 (6) not only has the best accuracy with the truncation error
(Az)? ~ (Ay) 2 y y

O[(At)?, (Ax)?2, (Ay)?], but also unconditional stability.
Thus, the difference equation of the heat conduction de-
rived from the Crank—Nicolson method can be expressed

This constraint restricts the size of the time steffor the
given space incrememz and Ay.
» Simple Implicit Method

: . . ) as follows:
Applying the simple implicit update on the right-hand ) . )
side of (4) at time step, we get — TP =y T+ 2(1 441y ) T7
n+1 n+1
TLnj+1 - T;n_] 5§T"+1 65T"+1 1 TL-‘rl J T’!ITL J+1
At Y (Awp i (Ay)? " Egi’j. ) =iy T+ 2(1 = e =y ) T35
" n 2At
There are five unknowns in each equation at painf)( Tl +ry T + _pcp UNE
This approach involves large-scale matrix inversion, and i=1,2,...,I—-1; j=12,....0J-1 (9)

the truncation error i©)[(At), (Az)2, (Ay)?]. However,
the advantage of the method is that there is no restriction ~Wherer, = aAt/(Az)? andr, = aAt/(Ay)?.
on the step size because of the unconditional stability.  However, there are some difficulties for solving the above
 Crank-Nicolson Method equations. Considering a 2-D mesh with size-1) by (J+1),
Crank and Nicolson developed another method Hie number of variables needed for this systerVis= (I +
taking the average of the simple explicit update and thg(.J + 1), which requires a matrid with size N x N to store
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Run Time of CN, DG, and PR v.s. Number of Nodes
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Fig. 8. Run-time comparisons of the Crank—Nicolson, the Douglas—Gunn, and Peaceman—Rachford methods.

the coefficients. To solve the equatiots = b by LU decompo- problems, as shown in Fig. 3. Two detailed approaches are dis-
sition or Cholesky decomposition, the run-time and memory reussed as follows.
quirements are superlinear even with sparse matrix techniques.

A. Peaceman—Rachford Method

IV.ADI M ETHODS First, rearranging (8) and having the following expression:

Since the Crank—Nicolson method is computationally inten-
sive, Peaceman and Rachford [8] and Douglas and Gunn [9] dg- _ 7"_152> (1 _ 25’2>Tn+1
veloped the ADI method to overcome this difficulty. Basically, 2" 2 Y
i - -di - - : At
the ADI method is a process to reduce the two- or three-dimen _ (1 4 %62) (1 n %’55)T" LA 10
C

sional problems to a succession of two or three one-dimensional PCp
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Peaceman and Rachford proposed an ADI method to solve the TABLE Il
above equations by two steps RUN TIME OF THE CRANK—NICOLSONPEACEMAN—RACHFORD,
’ AND DOUGLAS-GUNN METHODS
e Step |
# Nodes CN PR DG
Te 9\ mt1/2 _ Ty 2\ At (seconds) | (seconds) | (seconds)
(1 - 751*) T =L+50)T"+ 200, (11) 2500 Ta1 2 2
P
4900 502 4 4
* Step Il 10000 1665 7 6
40000 25303 25 28
T, T At 90000 133433 64 69
(1 - %55) Tt = (1 + %53) T2 4 5,9 (12) 160000 || 576750 21 140
Pep 250000 || 2520000 223 252
This algorithm completes the time step frento » + 1 with iggggg . ig—sl 222
two sub-time steps: from to n + 1/2 and fromn + 1/2 to 640000 . 561 72
n+1. The detailed process is shown in Fig. 4Sttep | it applies 810000 - 711 845
the implicit update in the:-direction and the explicit update in ‘11888888 - 32‘7‘2 ;(1)23
the y-direction. For ea_cb‘ \ﬂlil/eé there aré + 1 equation_s for 5000000 . 9113 7729
the corresponding points; ;" "', wherei = 0,...,I. Since 25000000 - 28235 37122
cnt1/2 49000000 . 60375 85625
each temple;ature pmlﬁ‘l’é ; is related to two temperature 2000000 - 93500 T 113530
pointsT,L-”_J’lj/ andT[_f;_]/ , the coefficient matrix is in tridiag- 81000000 - | 106525 | 143414
onal form, which can be easily solved with linear run time. In 100000000 - | 134708 -

Step 1| it applies the implicit update in the-direction and the
explicit update in the:-direction similar toStep | . Step Il
The detailed difference equationsSitep Ifor eachj in (11)

can be derived as follows: 7262

1 1/2 Ty 1 At
n+1/2 n+1/2 n+1/2 pc
— T+ @+ 2T T ’ 17)
n n n At
=1yl + (2= 2r) I+ 1y L + pe, Th Since the Douglas—Gunn method uses a similar ADI method
i=1,2,....,1—1; j=1,2,...,J—1. (13) tothe Peaceman—Rachford method, we will ignore the detailed
discussion about the time marching. After derivation, the differ-
Similarly, the difference equations Bitep IlIfor eachi in (12) ence equations iStep Ifor eachj value are as follows:
can be expressed as

n+1/2 n+1/2 n+1/2
—n T 4+ 2014 T = T

=y T+ (2 + 2’"3/)Tif1 =y 175

g ij+1 A =T ;421,151 +2(1 =7 =27, )T}
— n+1/2 n+1/2 n+1/2 t oA
=, T+ (2= 2r TL +TTi P —gi,
zdi_15 ( <) \J 41,5 PCp 9i,5 + TzTﬁ-Lj + 27”yT,glj+1 + —,DCp 9i.j

'L.:1727...7I_1; j:1727...7j_1. (14) Z.:l-/Z,.-.-/I_l; j:172,.-.7J_1- (18)

Now, we can r_educe the 2-D problems into a successionffe gifference equations iBtep Il for eachi value are as
two one-dimensional problems by the Peaceman—Rachfogg,s:

ADI method. For every one-dimensional problem, the tridiag-
onal matrix is solved by the Thomas algorithm [11] with time—@Tz*_ll+2(1+ry)Tg’J’*1_nJTﬁ+1

. %, 4+
complexityO(n). ntl/2 ntl/2 n+1/2 n n
= (T =2 T e T ) e T e T
— n n n 2At
B. Douglas—Gunn Method +2(1-n, — @)T@j T+ Tl + ng;ﬁ
Douglas and Gunn developed another general ADI method o I 1. i— 7 Per 19
that is unconditionally stable and second-order accurate. As t=12,...,I-1 j5=12,...,J-1 (19)
shown in [9], (8) can be rewritten as Similarly, the above tridiagonal equation sets can be solved with
) 162 . 7,62 ) At a linear run time.
T =T = = (TP T ) (T +T")+p7.q- Consider a given mesh with sizé = (I + 1) x (J + 1).
{15) In Step | there areJ + 1 values ofj, and eachj takes time

O(I+1) to solve the tridiagonal system. Therefore, the run time
According to the Douglas—Gunn method, (15) is solved by tw O(2 x (J + 1) x (I + 1)) for a complete ADI iteration. The
sub-time steps. time complexity of the thermal-ADI method is the{ K 2N) =
O(N), whereK is the iteration number to reach steady state.
This analysis means that the thermal-ADI method is linear with
respect to the total number of nodes. In Section IV-C, we will
consider the boundary conditions.

e Step |

162 At
Tn+1/2_Tn — T(Tn—kl/?_f_Tn)_}_ry&yZTn + pTg, (16)
P
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Transient Thermal Simulation of CN, DG , PR
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Fig. 9. Transient simulation results of the Crank—Nicolson, Douglas—Gunn, and Peaceman—Rachford methods at a point in the chip.

C. Boundary Conditions mation to discretize the boundary condition, e.g4 at 0 and

time stepn + 1/2 in (20). We then have

The difference equations of heat conduction by the A2 pnt/2
Cran.ck—NlcoIson method in (9) fo:r_ = 1,2,...,(] = 1) _, LJ —1,j +hOZTg‘J-’1/2 — oo T, ati = 0.
andj = 1,2,...,(J — 1) only provide(I — 1) x (J — 1) 2Az 7 21)
algebraic equations, but ‘?0‘_“3@ +1) x .(J +1) unknown Thus, the virtual point can be expressed as
temperature nodeq;’;. Similarly, the difference equations OALh
for the Peaceman—Rachford method and the Douglas—Gunn Tffl,/Q — Tl";.H/Z 4 2200z (Too _ T;;rl/?)‘ (22)
method in (13) and (14) and (18) and (19), respectively, need ’ ’ kK ’
two extra equations for eachor j value. Hence, the points The other virtual pointﬁ“}fllf, Tijlm, andT{fﬁ{2 can be
on the boundary conditions are needed to make the numbedefived via the same way. These derived virtual points can then
equations equal to the number of unknowns. Suppose that eeused to replace the virtual points occurring on the boundary
have the following boundary conditions: points in the difference equations. For example, the difference
equations of the Peaceman—Rachford method at poinf3 i(®,
Step lhave the expression

oT
—k— 4+ hoaT =hosToo, at: =20

oT | I @ 2 T
K% 4+ hrT=hr.Ts, at; =1 = T'yT(?,j—l +(2- 2ry)T(?,j + TyT(?,j-i-l + /)A?zgo’j. (23)
"oy *hoyT=hoyToc, 2] =0 The virtual pointTfi;/2 in the above equation can be replaced
K(?_T + hyyT=hy, T, atj=J (20) by the expression in (22), and then the difference equations of

Jy Step lat points (0,j) for the boundary conditions are

n+1/2 n+1/2
wherehq,, hr., ho,, andhy, are the equivalent heat-transfer(2 + 272 02)To, 2raTy s
coefficients calculated from the equivalent thermal resistance = ry T -1+ (2 = 21y )15 41y T4 41+ 272702+
on the boundary = 0,7 = I, j = 0, andj = J, respectively,
andT,, is the ambient temperature. (24)

In order to achieve the second-order accuracy, the central-aifaere S, —14 (A z hao, )/x @NAT02 = (A2 hopToo) /K.
ference approximation will be used to discretize the boundaryThe difference equations of the Peaceman—Rachford method
conditions. First, we introduce the virtual temperature nodes the boundary = I, j = 0, andj = J can be obtained
1"y 5 Theq o Ty, andTy; by expanding the region with similarly and are shown in Table Il. The difference equations
Az to the left and right and witkl\y to the bottom and top, as on the boundary for the Crank—Nicolson method and the Dou-
shown in Fig. 5, and then apply the central-difference approxjtas—Gunn algorithm can be derived similarly.

t
—90,5-
PCp !



698 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Douglas-Gunn Algorithm v.s. Gamma
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Fig. 10. Douglas—Gunn method is unconditionally stable. Since taues exceed the criteria value 0.5, the results are still stable rather than oscillating.
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Fig. 11. Errors of the Douglas—Gunn method compared to the Crank—Nicolson method at time step 1000, as shown in Fig. 10.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The flowchart of the transient thermal simulation by the ADI
method is shown in Fig. 6. The main features of implementation
are as follows.

» The core part of the thermal-ADI is a fast 2-D transient
thermal simulator. The first step for the thermal simulation
is to partition the chip into a mesh, and choose the size of
At, Ax,andAy. The second step is to extract the layout of

transistors and metal wires from circuits. There are three
situations of layout extraction, as shown in Fig. 7. The
simulator reads the given circuit descriptions, the coordi-
nates of the gates, metal wires, and power/ground/clock
interconnects for thermal simulation, and then calculates
the information at each node on the mesh according to the
physical parameters at that point. Finally, it iteratively cal-
culates the temperature at each node by the ADI method
and outputs the temperature profile.
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Fig. 12. Comparison of memory usages of the Crank—Nicolson, Douglas—Gunn, and the Peaceman—Rachford methods.

« We use the band structure to implement theme iterations. As can be seen in Fig. 8, the run time of the
Crank—Nicolson method in order to reduce the ruBouglas—Gunn and Peaceman—Rachford methods is linearly
time and the memory usage. Therefore, the chip wittroportional to the number of nodes, as shown with the node
mesh pointsV = (I +1) x (.J 4+ 1), we need a matrixt number up to 10. On the other hand, the run time of the
with size N x (I + 2) rather thanV x N. Crank—Nicolson method increases dramatically. Note that the

The thermal-ADI simulation was implemented with+d  scale in they-axis is logarithm in the top figure.
language, and was executed on an Alpha workstation with dualThe temperature of transient thermal simulation at a random
SLOTB 667-MHz Alpha 21264 processors. chosen point is shown in Fig. 9. This is done by a %0000

The run-time comparison of the Crank—Nicolson, thmeshwith 1000 time steps. The difference of the Douglas—Gunn
Peaceman—Rachford, and the Douglas—Gunn methods is shavathod compared to the Crank—Nicolson method is less than
in Fig. 8 and Table Ill. All the methods are tested with 500.1%, and the difference of the Peaceman—Rachford method
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TABLE IV
MEMORY USAGES OF THECRANK—NICOLSON, PEACEMAN—RACHFORD,
AND DOUGLAS-GUNN METHODS

[3] K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli, and C. Hu,
“On thermal effects in deep sub-micron VLSI interconnects,36th
ACM/IEEE Design Automation ConfL999, pp. 885-891.

[4] V. Székely, “Tracing the thermal behavior of ICSIEEE Des. Test

#Nodes || CN PR | DG Comput, vol. 15, pp. 14-21, Apr.—June 1998.
(Mb) (Mb) | (Mb) [5] Y.-K. Cheng, P. Raha, C.-C. Teng, E. Rosenbaum, and S.-M. Kang,
4900 || 7.048 | 1.104 | 1.144 “ILLIADS-T: An electrothermal timing simulator for temperature-sen-
10000 17 1.192 | 1.272 sitive reliability diagnosis of CMOS VLSI chips[EEE Trans. Com-
gm Zﬁ ;jg ;?gi puter-Aided Desigrvol. 17, pp. 668—681, Aug. 1998.

160000 558 3'592 4'848 [6] D. Chen, E. Li, E. Rosenbaum, and S.-M. Kang, “Interconect thermal

355000 1500 5016 T 6976 modeling for accurate S|mu|a}t|on of circuit timing and reliabilit\EEE

360000 - 6752 1 968 Trans. Computer-Aided Desigwol. 19, pp. 197-205, Feb. 2000.

290000 - 33 2 [7] Z.Yu, D. Yergeau, and R. W. Dutton, “Full chip thermal simulation,” in

640000 . 10 15 Int. Quality Electronic Design SymgMar. 2000, pp. 145-149.

810000 N 13 9 [8] D. W. Peaceman and H. H. Rachford, Jr., “The numerical solution of
1000000 - 16 24 parabolic and elliptic differential equations]” Soc. Ind. Appl. Math.
4000000 - 62 93 vol. 3, pp. 28-41, 1955.

9000000 - 138 207 [9] J. Douglas, Jr. and J. E. Gunn, “A general formulation of alternating
25000000 - 383 574 direction methods—Part I: Parabolic and hyperbolic probleisyher.
49000000 - 749 1100 Math,, vol. 6, pp. 428-453, 1964.

64000000 - 978 1460 [10] M. N. Ozisik, Boundary Value Problems of Heat ConductiorNew
81000000 - 1200 1300 York: Dover, 1968.
100000000 - 1500 - [11] ——, Finite Difference Methods in Heat TransferBoca Raton, FL:
CRC, 1994.
[12] G. E. Myers,Analytical Methods in Conduction Heat Transf@nd

compared to the Crank—Nicolson method is 2.25%. The tran-  €d- Schenectady, NY: Genium, 1987.

sient temperature curve of the Douglas—Gunn method is very
close to the curve of the Crank—Nicolson method.

In order to test the property of unconditional stability, th
stability constrainty in (6) was simulated from 0.4 to 20, as
shown in Fig. 10, where 1/2 is the stability limit. As can be ok
served in Fig. 10, the Douglas—Gunn method is unconditiona
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