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Optimal Wire-Sizing Function Under the Elmore Delay
Model With Bounded Wire Sizes

Yu-Min Lee, Charlie Chung-Ping Chen, and D. F. Wong

Abstract—In this brief, we develop the optimal wire-sizing functions
under the Elmore delay model with bounded wire sizes. Given a wire seg-
ment of length , let ( ) be the width of the wire at position , 0

. We show that the optimal wire-sizing function that minimizes
the Elmore delay through the wire is ( ) = , where 0
and 0 are constants that can be computed in (1) time. In the case
where lower bound ( 0) and upper bound ( 0) of the wire
widths are given, we show that the optimal wire-sizing function ( ) is a
truncated version of that can also be determined in (1) time. Our
wire-sizing formula can be iteratively applied to optimally size the wire seg-
ments in a routing tree.

Index Terms—Elmore delay, optimal, wire sizing.

I. INTRODUCTION

As very large-scale integration (VLSI) technology continues to scale
down, interconnect delay has become the dominant factor in deep sub-
micron designs. As a result, wire sizing plays an important role in
achieving desirable circuit performance. Recently, many wire-sizing
algorithms have been reported in the literature [1]–[5]. All these algo-
rithms size each wire segment uniformly, i.e., identical width at every
position on the wire. In order to achieve nonuniform wire sizing, ex-
isting algorithms have to chop wire segments into large number of small
segments. Consequently, the number of variables in the optimization
problem is increased substantially and thus results in long runtime and
large storage.
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Fig. 1. Six types of optimal wire-sizing functions.

In [6], the optimal wire shape with minimal Elmore delay without
wire-size constraints are presented using the calculus of variation
methods. In this brief, we develop the optimal wire-sizing function for
minimal Elmore delay with the wire-size constraints using only basic
mathematical methods. Given a wire segmentW of lengthL, a source
with driver resistanceRd, and a sink with load capacitanceCL. For
eachx 2 [0; L], let f(x) be the wire width ofW at positionx. Fig. 1
shows an example. Letr0 andc0 be the respective wire resistance and
wire capacitance per unit square. LetD be the Elmore delay from
the source to the sink ofW . We show that the optimal wire-sizing
function f that minimizesD satisfies a differential equation which
can be analytically solved. We havef(x) = ae�bx, wherea > 0
andb > 0 are constants that can be computed inO(1) time. These
constants depend onRd,CL,L, r0, andc0. Our method is extended to
solve the case where lower bound (L > 0) and upper bound (U > 0)
on the wire widths are given, i.e.,L � f(x) � U , 0 � x � L, we
show that the optimal wire-sizing functionf(x) is a truncated version
of ae�bx which can also be determined inO(1) time. Our wire-sizing
formula can be iteratively applied to optimally size the wire segments
in a routing tree.

The remainder of this brief is organized as follows. In Section II,
we show how to compute the Elmore delay for nonuniformly sized
wire segments. In Section III-A, we derive the optimal wire-sizing
function when the wire widths are not constrained by any bounds. In
Section III-B, we consider the case where lower and upper bounds for
the wire widths are given. We discuss the importance of our wire-sizing
formula in sizing the wire segments in a routing tree in Section IV. Fi-
nally, we present some experimental results and concluding remarks in
Section V.

II. ELMORE DELAY MODEL

We use the Elmore delay model [7]. SupposeW is partitioned into
n equal-length wire segments, each of length4x = L=n. Let xi be
i4x, 1 � i � n. The capacitance and resistance of a wire segment
i can be approximated byc04xf(xi) andr04x=f(xi), respectively.
Thus, the Elmore delay throughW can be approximated by

Dn = Rd CL +

n

i=1

c0f(xi)4x

+

n

i=1

r04x

f(xi)

n

j=i

c0f(xj)4x+ CL : (1)

The first term is the delay of the driver, which is given by the driver
resistanceRd multiplied by the total capacitance ofW andCL. The
second term is the sum of the delay in each wire segmenti, which is
given by its own resistancer04x=f(xi) multiplied by its downstream
capacitance n

j=i
c0f(xj)4x+CL. (See Fig. 2.) Asn!1,Dn !

D where

D = Rd CL +
L

0

c0f(x)dx

+
L

0

r0
f(x)

L

x

c0f(t) dt+ CL dx (2)

is the Elmore delay through the driver andW .
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Fig. 2. Nonuniform wire sizing.

III. OPTIMAL WIRE-SIZING FUNCTION

In this section, we derive closed-form formula for the optimal wire-
sizing function. It is reasonable to assume that wire-sizing functions are
bounded and piecewise smooth with at most finite number of discon-
tinuity points. We consider two casesunconstrainedandconstrained
wire sizing. In unconstrained wire sizing, there is no bound on the value
of f(x); i.e., we determinef : [0; L] ! (0; 1) that minimizesD.
In constrained wire-sizing, we are givenL > 0 andU < 1, and
require thatL � f(x) � U , 0 � x � L; i.e., we determinef :
[0; L] ! [L; U ] that minimizesD.

A. Unconstrained Wire Sizing

We now consider unconstrained wire sizing. We show that the op-
timal wire-sizing function satisfies a second-order ordinary differential
equation which can be analytically solved.

Theorem 1: Let f be an optimal wire-sizing function. We have

f2(x) =
r0 CL + c0

L

x
f(t) dt

c0 Rd + r0
x

0
1

f(t)
dt

: (3)

Proof: Letx 2 [0; L]. Assumef is continuous atx. We consider
f̂ which is a local modification off in a small region[x� (�=2); x+
(�=2)]. The functionf̂ is defined as follows:

f̂(t) =
y; x�

�

2
� t � x+

�

2

f(t); otherwise.
(4)

The wireW could be divided into three regions
1, 
2, and
3 as
shown in Fig. 3. We denote the signal delay through
i byDi. Hence
the total signal delayD = 3

i=1Di. We represent the wire resistance
(capacitance) of
i byRi (Ci). We haveR2 = r0�=y andC2 = c0�y.
The signal delay through the wire can be calculated as follows:

D =Rd(CL + C1 + c0�y + C3 + CL) +
x�(�=2)

0

r0
f(t)

�
x�(�=2)

t

c0f(s)ds+ c0�y + C3 + CL dt

+
r0�

y
(c0�y + C3 + CL)

+
L

x+(�=2)

r0
f(t)

L

t

c0f(s)ds+ CL dt: (5)

Thus

dD

dy
= c0� Rd + r0

x�(�=2)

0

1

f(t)
dt

�
r0� CL + c0

L

x+(�=2)
f(t)dt

y2
: (6)

By settingdD=dy = 0, we get

y2min =
r0 CL + c0

L

x�(�=2)
f(t)dt

c0 Rd + r0
x+(�=2)

0
1

f(t)
dt

: (7)

Therefore,f̂ usingy = ymin gives minimum delay.
Let � ! 0, we get

y2min =
r0 CL + c0

L

x
f(t)dt

c0 Rd + r0
x

0
1

f(t)
dt

: (8)

Sincef is an optimal wire-sizing function, we haveymin = f(x), and
hence

f2(x) =
r0 CL + c0

L

x
f(t)dt

c0 Rd + r0
x

0
1

f(t)
dt

: (9)

For the case wheref is not continuous atx, we havef is either left-
continuous or right-continuous atx. All we need to do is to start with
using the interval[x � �; x] or [x; x+ �], respectively.

Note thatCL+c0
L

x
f(t)dt is equal to the downstream capacitance

at pointx [denoted by�(x)] andRd + r0
x

0
(1=f(t))dt is equal to

the upstream resistance at pointx [denoted by�(x)]. Hence, we can
rewrite (3) as

f(x) =
r0�(x)

c0�(x)
: (10)

Since� is strictly decreasing and� is strictly increasing, thereforef
is strictly decreasing.

By rearranging the terms in (3) and differentiating it with respect to
x twice, we get the following theorem.

Theorem 2: Let f(x) be an optimal wire-sizing function. We have

f 00(x)f(x) = f 0(x)2: (11)

Proof: We first multiply (3) by the denominator of its right hand
side and then differentiating both side with respect tox. We get

2f(x)f 0(x) Rd + r0
x

0

1

f(t)
dt = �2r0f(x): (12)

Sincef(x) 6= 0, we can divide both side byf(x) and get

f 0(x) Rd + r0
x

0

1

f(t)
dt = �r0: (13)

Sincef is strictly decreasing,f 0(x) < 0. Dividing the above equation
by f 0(x) and then differentiate both sides with respect tox, we obtain

f 00(x)f(x) = f 0(x)2: (14)

We can analytically solve the differential equation (11) and obtain a
closed-form solution. We have the following theorem.

Theorem 3: Let f(x) = ae�bx, wherea = r0=bRd and

b
RdCL

r0c0
� e(�bL)=2 = 0: (15)

We have thatf is an optimal wire-sizing function.
Proof: Let y = f(x) andP = y0. We havey00 = P (dP=dy).

The differential equation (11) can be rewritten as

P y
dP

dy
� P = 0: (16)

SinceP = f 0(x) < 0, we have

y
dP

dy
� P = 0: (17)

SeparatingP andy, we get

dP

P
=

dy

y
: (18)
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Fig. 3. Elmore delay model.

Integrating both sides, we get

P = c1y (19)

wherec1 is a constant. SinceP = y0, we have

dy

dx
= c1y: (20)

Separating the variables and integrating both sides, we get

c1x+ c2 = ln y (21)

wherec2 is a constant. It follows that

y = ec x+c = ae�bx (22)

wherea > 0 andb > 0. (Note thatb > 0 follows from the fact thatf
is decreasing.)

In order to determinea andb, we substitutef(x) = ae�bx into (9)
and check the two boundary pointsx = 0 andx = L. We obtain the
following:

c0bRda
2 + r0c0 e�bL � 1 a� r0bCL =0 (23)

c0bRda
2 + r0c0 ebL � 1 a� r0bCLe

2bL =0: (24)

We can simplify these two equations and get

ab =
r0
Rd

(25)

b
RdCL

r0c0
� e(�bL)=2 =0: (26)

Note that the functiong(z) = z (RdCL=r0c0) � e(�zL)=2 is a
strictly increasing function inz, g(0) < 0, andlimz!1 g(z) > 0.
Thus g(z) has a unique rootb > 0. We can use Newton–Raphson
method [8] to determineb and, in practice, five to seven iterations are
sufficient. Sincea = r0=Rdb andb > 0, we havea > 0. Fig. 4 shows
the exponentially decreasing nature of the optimal wire-sizing function.

B. Constrained Wire-Sizing

We now consider constrained wire sizing. It is clear that if the
wire-sizing functionf obtained for the unconstrained case lies within
boundsL andU , thenf is also optimal for constrained wire sizing.
On the other hand, if for somex, f(x) is not in [L; U ], a simple
approach is to roundf(x) to eitherL or U ; i.e., the new function is
obtained by a direct truncation off by y = L andy = U . (See Fig. 5.)
Unfortunately, the resulting function is not optimal. The reason is as

Fig. 4. Local modification of an optimal wire-sizing function.

Fig. 5. Optimal unconstrained wire sizing.

follows: Suppose the curvesf(x) = ae�bx andy = U intersect at
x = v, from (10)v must satisfy

f(v) =
r0�(v)

c0�(v)
(27)

for v to be on the optimal curve. However, from Fig. 5, it is clear that
v does not satisfy (27), because both of its upstream resistance and
downstream capacitance should be recalculated according to the new
function, in which the two values associated withv are reduced because
of the truncation. Thus, this simple approach is not optimal.

Recall that the optimal unconstrained wire-sizing function is
a decreasing function. We can show that the optimal constrained
wire-sizing function must also be decreasing.

Theorem 4: Let f be an optimal constrained wire-sizing function.
We have,f is decreasing on[0; L].

According to Theorem 4, the optimal wire-sizing functionf , similar
to the one shown in Fig. 5, consists of (at most) three parts. The first
part isf(x) = U , the middle part is a decreasing function, and the last
part isf(x) = L. The three parts off(x) partitionW into three wire
segments,A, B, andC, whereA has widthU , C has widthL, andB
is defined by the middle part off(x). It is easy to see that the middle
part off(x) must be of the formf(x) = ae�bx for somea > 0 and
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Fig. 6. Direct truncation is not optimal.

b > 0. To see this, we can consider the wire segmentA to be a part
of the driver and its resistance to be a part ofRd. Similarly, the wire
segmentC can be considered as a part of the load and its capacitance
as a part ofCL. According to (15), we can re-calculatea andb using
the new values ofRd andCL, as long as we know the length of the
wire segmentsA andB.

As mentioned before, not all three parts off(x) needed to be present.
In fact, an optimal constrained wire-sizing functionf(x) can be of any
one of the six types of functions (type-A, type-B, type-C, type-AB,
type-BC, and type-ABC) as shown in Fig. 6. Note that the six function
types clearly are named after the wire-segment types which are pre-
sented inW . For example, in a type-AB function,W consists only of
wire segments A and B. As shown in Fig. 6,l1, l2, andl3 are the length
of wire segments A, B, and C, respectively.

We now define six wire-sizing functionsfA, fB , fC , fAB , fBC ,
fABC as follows: All six functions are of the form

f(x) =

U; 0 � x � l1;

ae�b(x�l ); l1 � x � l1 + l2;

L; l1 + l2 � x � l1 + l2 + l3 = L

(28)

where the parametersa, b, l1, l2, andl3 for the six functions are given in
Table I. Typically, the names of the functions correspond to their types,
i.e., fA is of type-A,fB is of type-B, and so on, but it is not always
true. For example, it is possible that after we compute the parameters
for fAB we getl1 � L and hence it is of type-A; it is also possible that
fAB degenerates into a type-B function. In this case, we say thatfAB is
degenerated. We also note that sometimes the functions may beillegal

in the sense that they violate the wire-width constraints. Nevertheless,
we can show that these six functions are candidates for an optimal con-
strained wire-sizing functionf(x). In fact, if we eliminate the functions
that are either illegal or degenerated, an optimal wire-sizing function
can be chosen as the best one (in terms of delay) among the remaining
ones. We have the following theorem.

Theorem 5: Let G � F = ffA; fB ; fC ; fAB ; fBC ; fABCg be
the set of functions that are either illegal or degenerated. Letf 2 F�G
be a function which has minimum delay. We have,f is an optimal
constrained wire-sizing function.

The above method always requires the computation of all
six functions in F . With the help of additional analysis, we
can speed up the procedure. Table II shows a set of sixfeasi-
bility conditions f'A; 'B ; 'C ; 'AB ; 'BC ; 'ABCg on L. Let
� = fA; B; C; AB; CB; ABCg.

Lemma 1: The six feasibility conditionsf'A; 'B ; 'C ; 'AB ; 'BC ;
'ABCg cover all possibleL > 0. Moreover, ifL satisfies'z , where
z 2 �, thenfz is legal and is of type-z.

Theorem 6: LetH = ffzjz 2 � andL satisfies'zg. Let f 2 H

be a function which has minimum delay. We have,f is an optimal
constrained wire-sizing function.

According to Theorem 6, we only need to check the six feasibility
conditions. Only the functions inH needed to be computed. In general,
jHj < 6 and we have never encountered any case wherejHj 6= 1.

We also have the following interesting observations. In Fig. 7, we
show the relationships among the six types of optimal wire-sizing func-
tions with respect to the three parameters: wire lengthL, driver resis-
tanceRd, and load capacitanceCL. The horizontal axis represents the
trend of the driver resistance and the load capacitance. The vertical axis
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TABLE I
DEFINITIONS OFTHE WIRE-SIZING FUNCTION f ; f ; f ; f ; f ; AND f

TABLE II
FEASIBILITY CONDITIONS

Fig. 7. Relationships among the six types of functions with respect toL and
R andC .

TABLE III
RCPARAMETERS

represents the wire lengthL. Suppose we keepRd andCL fixed and
variesL. WhenL is small, optimal wire-sizing functions tend to be of
type-A, type-B, or type-C. As we increaseL, wire-sizing function types
will change to type-AB or type-BC whenL is of moderate size and will
be of type-ABC whenL is large. Suppose we keepL fixed and varies
Rd andCL. WhenL is small, as we increaseRd or decreaseCL, op-
timal wire-sizing function will change from type-A to type-B and then

TABLE IV
NUMBER OF NEWTON–RAPHSONITERATIONS

to type-C. WhenL is of moderate size, optimal wire-sizing function
will change from type-AB to type-BC as we increaseRd or decrease
CL. Roughly speaking, the larger theRd or1=CL, the smaller the wire
sizes. When the wire lengthL is very large, the optimal wire-sizing
function is most likely to be of type-ABC.

IV. A PPLICATION TO ROUTING TREES

Our wire-sizing formula can be applied to size a general routing tree.
Recently, [2] presents a wire-sizing algorithm GWSA-C for continu-
ously sizing the wire segments in routing trees to minimize weighted
delay. Each segment in the tree is sized uniformly, i.e. uniform wire
width per segment. Basically, GWSA-C is an iterative algorithm with
guaranteed convergence to a global optimal solution. In each iteration
of GWSA-C, the wire segments are examined one at a time; each time a
wire segment is uniformly re-sized optimally while keeping the widths
of the other segments fixed. We can incorporate our wire-sizing for-
mula into GWSA-C to size each wire segment nonuniformly. When
we apply our wire-sizing formula to size a wire segment in a tree,
Rd should be set to be the total (weighted) upstream resistance in-
cluding the driving resistance, and theCL should be set to be the total
(weighted) downstream capacitance, including the load capacitances of
the sinks in the subtree. (See Fig. 8.) It can be shown that this modified
algorithm is extremely fast and always converges to a global optimal
solution.
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Fig. 8. Sizing a segment of a routing tree.

Fig. 9. Approximating nonuniform wire sizing by uniform wire sizing.

V. EXPERIMENTAL RESULTS ANDCONCLUDING REMARKS

We implemented and tested our algorithm using C on a Sun Sparc
5 workstation with 16-MB memory. The parameters used are shown
in Table III. The results are given in Table IV. The first column
labeled “Precision Requirement” specifies the required accuracy of
the wire width values. The second column shows the number of
Newton–Raphson iterations. Our results show that even under very
strict precision requirements, the number of iterations is at most seven.
Thus, in practice, the optimal wire-sizing functions can be computed
in O(1) time and hence our method is extremely fast.

We also performed experiments to compare the nonuniform wire-
sizing solutions with the uniform ones in which wires are chopped into
different number of segments. The results are shown in Fig. 9. Wire
widths are plotted as the functions of positions on the wire segments.
It shows that the more segments a wire is chopped into, the closer the
solution is to our formula. When the wire is chopped into 1000 seg-
ments, it can be shown that the corresponding curve and the nonuni-
form wire-size curve are almost identical.

TABLE V
RUNTIME AND MEMORY USAGE OFGWSA-C. [UNIT: RUNTIME

(MILLISECOND), MEMORY (KILOBYTES), STEP WIDTH (1 �m)]

Finally, we compare the runtime and memory usage of the optimal
wire-sizing function with the GWSA-C on a single wire with 100 to 106

segments. We use the Newton–Raphson method [8] to determineb for
the optimal wire-sizing function. Then, we substituteb into Equation
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(25) to geta. The runtime is only 0.021 35 ms, and the memory usage is
extremely low. The runtime and memory usage of GWSA-C is listed in
Table V. It is obvious that the optimal wire-sizing function runs much
more efficiently than GWSA-C.
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Asymptotic Behavior of Delay 2-D Discrete
Logistic Systems

Shu Tang Liu and Guanrong Chen

Abstract—Asymptotic behavior of all solutions of the delay two-dimen-
sional logistic system + = (1 )
is investigated. Some sufficient conditions for the stability of this equation
are derived. Moreover, some sufficient and necessary conditions for oscil-
lations of all solutions of this equation are obtained.

Index Terms—Delay two-dimensional (2-D) logistic system, linearization,
oscillation, stability.

I. INTRODUCTION

In the engineering literature, particularly in the fields of digital fil-
tering, imaging, and spatial dynamical systems, two-dimensional (2-D)
discrete systems have been a focused subject for investigation (see, for
example, [1]–[3] and [7]–[13], and the references cited therein). Of es-
pecially interesting is the delay 2-D discrete logistic system

xm+1; n + axm; n+1 = �mnxmn(1� xm��; n�� ) (1.1)
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where f�mng is a double sequence of positive real con-
stants, �, � are nonnegative integers, anda 2 (�1; 1),
m; n 2 N0 = f0; 1; 2; . . .g. The stability and oscillation of
all solutions of (1.1) are important properties, which, however,
have not been carefully studied before. This brief is to introduce a
linearization method for analysis of the stability of all solutions of
system (1.1). Some sufficient and necessary conditions for oscillations
of all its solutions will also be derived.

First, observe that in the particular case where�mn = � and� =
� = 0, system (1.1) becomes

xm+1; n + axm;n+1 = �xmn(1� xmn) (1.2)

and, whena = 0 andn = n0, it follows from (1.2) that

xm+1; n = �xmn (1� xmn ) (1.3)

which is just the familiar simple case of the one-dimensional (1-D) lo-
gistic system. Therefore, (1.1) is quite general. Moreover, (1.1) can be
regarded as a discrete analog of the following functional partial differ-
ential equation:

@u

@x
+

@u

@y
= �u(x; y) (1� u(x� �; y � � ) +

2

�
:

In fact, this system is aconvection equationwith a forced term in
physics. Therefore, qualitative properties of (1.1) may lead to some
useful information for analyzing this companion partial differential
system.

Throughout, let


 = f��; �(� + 1); . . . ; �1; 0g

�f��; �(� + 1); . . . ; �1; 0; 1; 2; . . . ; n; . . .g:

In the following, the existence and uniqueness of the solution of
system (1.1) are discussed, along the line of the studies in [14, pp.
215–216], and [17, pp. 61–62].

Notice that for a given function'(i; j) defined on
, it is easy to
construct, by induction, a double sequencefxijg that equals'(i; j)
on 
 and satisfies system (1.1) fori; j = 0; 1; 2; . . . . Indeed, one
can rewrite (1.1) as

xm+1; n = �mnxmn(1� xm��;n�� )� axm; n+1

and then use it with given initial conditions to calculate, successively,
x10; x11; x20; x12; x21; x30; . . . .

Since

x10 =�00x00(1� x
��;�� )� ax01

x11 =�01x01(1� x
��; 1�� )� ax02

x20 =�10x10(1� x1��;�� )� ax11

x12 =�02x02(1� x
��; 2�� )� ax03

� � � � � � � � � � � �

such a double sequence is unique and is a solution of system (1.1) sub-
ject to theinitial condition

xij = '(i; j); (i; j) 2 
: (1.4)

Let


0 = f(i; j) j i; j = 0; 1; 2; . . .g:
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