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Optimal Wire-Sizing Function Under the Elmore Delay of ae~*® which can also be determined@ 1) time. Our wire-sizing

Model With Bounded Wire Sizes formula can be iteratively applied to optimally size the wire segments
in a routing tree.
Yu-Min Lee, Charlie Chung-Ping Chen, and D. F. Wong The remainder of this brief is organized as follows. In Section I,

we show how to compute the Elmore delay for nonuniformly sized

wire segments. In Section IlI-A, we derive the optimal wire-sizing

Abstract—in this brief, we develop the optimal wire-sizing functions function when the wire widths are not constrained by any bounds. In
under the Elmore delay model with b_ounded wire_sizes. Giyt_an a wire seg- Section I1I-B, we consider the case where lower and upper bounds for
ment of length L, let f () be the width of the wire at position@, 0 < 0 \yire widths are given. We discuss the importance of our wire-sizing

x < L. We show that the optimal wire-sizing function that minimizes R - - . . . .
the Elmore delay through the wire is f(z) = ae~%, wherea > 0 formula in sizing the wire segments in a routing tree in Section IV. Fi-

and b > 0 are constants that can be computed irO(1) time. In the case nally, we present some experimental results and concluding remarks in

where lower bound (L > 0) and upper bound (U > 0) of the wire  Section V.

widths are given, we show that the optimal wire-sizing functionf (=) is a

truncated version of ae~*" that can also be determined inO(1) time. Our

wire-si;ing form_ula can be iteratively applied to optimally size the wire seg-

ments in a routing tree. We use the EImore delay model [7]. Supp®¥eis partitioned into

Index Terms—EImore delay, optimal, wire sizing. n equal-length wire segments, each of length = L/n. Letx; be

iAz,1 < i < n. The capacitance and resistance of a wire segment
i can be approximated by Az f (x;) andro Ax/ f(x;), respectively.

Il. ELMORE DELAY MODEL

|. INTRODUCTION Thus, the EImore delay throudl™ can be approximated by
As very large-scale integration (VLSI) technology continues to scale n
down, interconnect delay has become the dominant factor in deep sbl-= Ra | C1, + Z cof(xi)Ax
micron designs. As a result, wire sizing plays an important role in i=1

achieving desirable circuit performance. Recently, many wire-sizing LN

algorithms have been reported in the literature [1]-[5]. All these algo- +> P > cof(z)de+Cr ). (1)
rithms size each wire segment uniformly, i.e., identical width at every i=1 J=i

position on the wire. In order to achieve nonuniform wire sizing, ex- The first term is the delay of the driver, which is given by the driver
isting algorithms have to chop wire segments into large number of smadkistance, multiplied by the total capacitance & andC'r.. The
segments. Consequently, the number of variables in the optimizati@stond term is the sum of the delay in each wire segremtich is
problem is increased substantially and thus results in long runtime agiglen by its own resistanog Az/ f(x;) multiplied by its downstream

large storage. capacitancg _; co f(z;) Az +Cr. (See Fig. 2) Az — oo, Dy, —
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wire Therefore,f usingy = ymin gives minimum delay.

/\ oo Torx To Leté — 0, we get
fixp fi(x,) fi (x3)
ro (Co+ oo [£ 5 at)

x C Cof () x Cof il x - Coftegon G Ymin = - . (8)
Co (Rd + 0 jO ﬁ dt)

Sincef is an optimal wire-sizing function, we havg.;n = f(x), and
hence

Fig. 2. Nonuniform wire sizing.

I1l. OPTIMAL WIRE-SIZING FUNCTION ro (CL +co ff 7@ dt)

2
In this section, we derive closed-form formula for the optimal wire- Fia) = c (R +r f~r 1 df) ' ®)

sizing function. It is reasonable to assume that wire-sizing functions are O\ 0o i

bounded and piecewise smooth with at most finite number of discofpr the case wherg is not continuous at, we havef is either left-

tinuity points. We consider two casesconstrainecandconstrained  continuous or right-continuous at All we need to do is to start with

wire sizing In unconstrained wire sizing, there is no bound on the valqging the intervale — 6, «] or [z, « + 6], respectively. 0

of f(x); i.e., we determinf: [0, £] — (0, co) that minimizesD.  Note that', +¢co [ f(t) dt is equal to the downstream capacitance

In constrained wire-sizing, we are givdn > 0 andU < oo, and gt pointa [denoted by['(x)] and Ry + 7o f(f(l/f(t)) dt is equal to

require thatl < f(x) < U,0 < » < £;ie., we determing’:  the upstream resistance at poinfdenoted by®(z)]. Hence, we can

[0, L] — [L, U] that minimizesD. rewrite (3) as
A. Unconstrained Wire Sizing ) rol(x)
We now consider unconstrained wire sizing. We show that the op- Ha) = co®(x)’ (10)

timal wire-sizing function satisfies a second-order ordinary differential ) ) ) ] o ]
equation which can be analytically solved. Sincel is strictly decreasing andt is strictly increasing, thereforg

Theorem 1: Let f be an optimal wire-sizing function. We have i Strictly decreasing. _ _ S
By rearranging the terms in (3) and differentiating it with respect to

N 70 (CL ~+ co ff 7@ dt) « twice, we get the following theorem.
) = S - 3) Theorem 2: Let f(x) be an optimal wire-sizing function. We have
o (Bat o JS gt 1) " oy?
) _ _ i) f(@) = f(x). (11)
_ Proof: Letax € [0, £]. Assumef is continuous at. We consider _ _ _ o
f which is a local modification of in a small regiorjz — (§/2), x + Proof: We first multiply (3) by the denominator of its right hand
(6/2)]. The functionf is defined as follows: side and then differentiating both side with respect t&Ve get
6 6 / 1
. . NS P P 2f () f (x <B +r / —clt>:—27'f;v). 12
fy=4Y TTpstsrty (4) (@)f (@) { Ra °f, O of( 12)
f(t), otherwise. Sincef(x) # 0, we can divide both side bj(x) and get
The wireW could be divided into three regioni$;, €2, and(2; as , z q
shown in Fig. 3. We denote the signal delay throtigtby D, . Hence fx) <Rd + 70 /O lO) dt) = —ro. (13)

the total signal delay» = 7| D;. We represent the wire resistance _ o _ . _
(capacitance) df; by R: (C;). We haveR, = ro6/y andCy = coéy.  Sincef is strictly decreasingf’(«) < 0. Dividing the above equation
The signal delay through the wire can be calculated as follows: by f'(x) and then differentiate both sides with respect tove obtain

=(8/2) (@) f(x) = ') (14)
D:RJ(CL—l—CH—|—(10(5’y+03+CL)+/ o
0 (0 O
z—(8/2) We can analytically solve the differential equation (11) and obtain a
: </f cof(s)ds + coby + Cs + C") dt closed-form solution. We have the following theorem.

o6 Theorem 3: Let f(x) = ae™"*, wherea = r¢ /bR, and
+ 7 ((«"Oﬁ?/ +Cs + CL)

e by Bl _ ez 2, (15)
+/ ro </ cof(s)ds-i—OL)dt. (5) 0co
E t

rtrsy2) 1) We have thaff is an optimal wire-sizing function.

Thus Proof: Lety = f(z) andP = y'. We havey” = P(dP/dy).
The differential equation (11) can be rewritten as
4D _ s Ra+ /‘(—(5/2) L 1P
dy = Co d (0] g f(t) ' P <y (d—u — P) =0. (16)
. !
3 rod (CL +c0 [ sy F(1) dt) ©) SinceP = f'(x) < 0, we have
y? ' P
By settingdD/dy = 0, we get Yy P=0. 17
o (CL + o ff_(ﬁ/g) £(1) dt) Separating® andy, we get

y;‘ﬂin = e . (7) (IP dy
co (Bd + 7o DIJF(é/Z) ﬁ df) ? = 7 (18)
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Fig. 3. Elmore delay model.
Integrating both sides, we get wire widh
fix)
P=cy (29)
wherec; is a constant. Sinc® = y', we have
dy
= =c1y. 20
dx “y (20)
Separating the variables and integrating both sides, we get  wire position
cir+c2=lIny (21) Fig. 4. Local modification of an optimal wire-sizing function.
wherec; is a constant. It follows that wire width
y= e r+ca — (”C—h:r (22) fix)

wherea > 0 andb > 0. (Note thath > 0 follows from the fact thaff
is decreasing.)

In order to determine andb, we substitutef () = ae™"" into (9)
and check the two boundary points= 0 andx = £. We obtain the

following: x wire position
"
cobRaa® + roco (e_bL — 1) a—robCr, =0 (23)
cobRua® + roco (ebg _ 1) o — 7'0bCL€2bc —0. (24) Fig. 5. Optimal unconstrained wire sizing.
We can simplify these two equations and get follows: Suppose the curvel(x) = ae *® andy = U intersect at
, x = v, from (10)» must satisfy
ab = R—O (25)
d , rol'(v)
v) = 27
b2 RaClL — (P02 . (26) ) co®(v) 27

for v to be on the optimal curve. However, from Fig. 5, it is clear that
o (—2£)/2 v does not satisfy (27), because both of its upstream resistance and
Il\lote.that thg funCt'OW(‘), =2V (RC‘CL/“J"P) - IS@  downstream capacitance should be recalculated according to the new
strictly increasing function in, ¢(0) < 0, andlim.—cc g(2) > 0. fynction, in which the two values associated withre reduced because

Thus (=) has a unique rook > 0. We can use Newton—-Raphson,t yhe tryncation. Thus, this simple approach is not optimal.

method [8] to determiné and, in practice, five to seven iterations are pacall that the optimal unconstrained wire-sizing function is

sufficient. Since: = 7o/ Rab andb > 0, we haver > 0. Fig. 4 Shows 5 gecreasing function. We can show that the optimal constrained
the exponentially decreasing nature of the optimal W're's'z'ngfunCt'O\W/ire-sizing function must also be decreasing.

Theorem 4: Let f be an optimal constrained wire-sizing function.
We have,f is decreasing ofl), £].

We now consider constrained wire sizing. It is clear that if the According to Theorem 4, the optimal wire-sizing functipysimilar
wire-sizing functionf obtained for the unconstrained case lies withito the one shown in Fig. 5, consists of (at most) three parts. The first
boundsL andU, thenf is also optimal for constrained wire sizing.partisf(x) = U, the middle part is a decreasing function, and the last
On the other hand, if for some, f(x) is not in[L, U], a simple partisf(x) = L. The three parts of (=) partition¥¥ into three wire
approach is to round(zx) to eitherL or U; i.e., the new function is segmentsA, B, andC, whereA has widthU, C' has widthZ, andB
obtained by a direct truncation ¢foy y = L andy = U. (See Fig. 5.) is defined by the middle part gf(z). It is easy to see that the middle
Unfortunately, the resulting function is not optimal. The reason is gmrt of f () must be of the forny (x) = ae="" for somea > 0 and

B. Constrained Wire-Sizing
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wire width
f(x)
fix)=U

(a) type-ABC
wire width wire width

ftx) ftx)

fix)=U
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)=de by
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fix)=L
L L —o
A C
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(d) type-A (e) type-B (f)  nype-C

Fig. 6. Direct truncation is not optimal.

b > 0. To see this, we can consider the wire segménb be a part in the sense that they violate the wire-width constraints. Nevertheless,
of the driver and its resistance to be a partfaf. Similarly, the wire  we can show that these six functions are candidates for an optimal con-
segment’' can be considered as a part of the load and its capacitasteined wire-sizing functiofi(). In fact, if we eliminate the functions
as a part of”;,. According to (15), we can re-calculadeandd using that are either illegal or degenerated, an optimal wire-sizing function
the new values o2, and(C’z, as long as we know the length of thecan be chosen as the best one (in terms of delay) among the remaining
wire segmentsi and B. ones. We have the following theorem.

As mentioned before, not all three partsf¢f ) needed to be present. Theorem 5:LetG C F = {fa, fs, fo, fas, fBo, fasc} be
In fact, an optimal constrained wire-sizing functifitw) can be of any the set of functions that are either illegal or degeneratedf leetF’— G
one of the six types of functions (type-A, type-B, type-C, type-ABhe a function which has minimum delay. We hayeis an optimal
type-BC, and type-ABC) as shown in Fig. 6. Note that the six functiotonstrained wire-sizing function.
types clearly are named after the wire-segment types which are preThe above method always requires the computation of all
sented inA. For example, in a type-AB functio}” consists only of six functions in F. With the help of additional analysis, we
wire segments A and B. As shown in Figl6,/>, andls are the length can speed up the procedure. Table Il shows a set offessi-

of wire segments A, B, and C, respectively. bility conditions {¢a4, ¥5, ¢c, vaB, ¢BC, paBc} oOn L. Let
We now define six wire-sizing functiongs, f&r, fc, fas, fec, T ={A, B, C. AB, CB, ABC}.
fasc as follows: All six functions are of the form Lemma 1: The six feasibility condition§o 4, ¢ 5, vo, pas, ¢se,
wapc } cover all possibleC > 0. Moreover, ifC satisfiesy ., where
U, 0<z< 1, z € T, thenf. is legal and is of type-
fla)y =< ae =01 <o <1y 4 1, Theorem 6: Let H = {f.|: € T and( satisfiesy.}. Let f € H
L, h4+b<z<h+bL+l=CL be a function which has minimum delay. We hayeis an optimal

(28) constrained wire-sizing function.

According to Theorem 6, we only need to check the six feasibility
where the parametewssb, 11,12, andls for the six functions are given in conditions. Only the functions i needed to be computed. In general,
Table I. Typically, the names of the functions correspond to their typd#]| < 6 and we have never encountered any case wWHéfes 1.

i.e., fa is of type-A, fg is of type-B, and so on, but it is not always We also have the following interesting observations. In Fig. 7, we
true. For example, it is possible that after we compute the parametshew the relationships among the six types of optimal wire-sizing func-
for fas we getl; > £ and hence itis of type-A; it is also possible thations with respect to the three parameters: wire leathriver resis-

fap degenerates into a type-B function. In this case, we saythais tanceR,, and load capacitan&g;, . The horizontal axis represents the
degeneratedWe also note that sometimes the functions maifleégal trend of the driver resistance and the load capacitance. The vertical axis
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TABLE |
DEFINITIONS OF THE WIRE-SIZING FUNCTION fa, fB, fc, fas, fec, AND fagc
ll lg l3 a b
fa C 0 0 U 0
_ T
I 0 L 0] Ui(a)=0 =
fc 0 0 L L 0
T
faB Us(l1) =0 L£—1 0 - Ll({ VRUETI
_ ro(CrL+coLls coL
fBC’ 0 L—l3 \I”3(l3) =0 | Ricol Cr+coLls
C UR C UR,
f ‘EOij*“C—(l‘}'l"%)Td ln%('c_o%+£+ rod L— lg _ ll U TQ
ABC 2+ln-§-{- 2+ln% RyU+7rolq
_ 2 roCL k- . _ roL+RyU _ 7 coU(RaU+rols) _
Ui(a) =a® — hee Ry ’(\IéZ(ZI)Ll—)é)‘*UM"h In =S 1
_ Cp+cLL ro(Cr+tcolLls)
\Ifg(lg) — CrtcolLly In coRy L2 1
TABLE 1
FEASIBILITY CONDITIONS
LS/ #1%
PA L S cqU 0 .
- (UR47, coRU> CrL 7y, _1moC
¥B L=< an{ ro, in roCp TnLlnaQR—d%E}
dl ~L
SOC E —<‘ 0 C(]L
URgj,coR4UZ Cr _ RyU U\CL _ RyU
pap | L> maﬂf{ﬂ—b“l ‘2;,“5767 al — r pand £<(1+ l”;']LLc(bL o
. . T UVEWU _ ¢
eBc | L > max{ L2 — 5%1{’ UT—DLL—lTé—%CO;’%dL } and(f %(1 +tl{nUL) < v
wapc | £L>maz{(14+InT)5= — =2, (1+Ing) 2k — 4=}
TABLE IV
ABC NUMBER OF NEWTON-RAPHSON | TERATIONS
Precision Requirement (um) | # of iterations
0.1 5
N 0.01 5
wire length AB BC 0.001 5
0.0001 6
L 0.00001 6
A B c 0.000001 7
to type-C. When’ is of moderate size, optimal wire-sizing function
Ra will change from type-AB to type-BC as we increaBg or decrease
C'.. Roughly speaking, the larger tli& or 1/C,, the smaller the wire
CL sizes. When the wire length is very large, the optimal wire-sizing
function is most likely to be of type-ABC.
Fig. 7. Relationships among the six types of functions with respe€taad
R, andCy. IV. APPLICATION TO ROUTING TREES
TABLE Il Our wire-sizing formula can be applied to size a general routing tree.
RC PARAMETERS Recently, [2] presents a wire-sizing algorithm GWSA-C for continu-

Unit Resistance: 0.008 Q/um
Unit Capacitance: 6.0x 10717 F/um
Minimum Wire Width: 1.0 uwm
Maximum Wire Width: 3.5 um
Driver Resistance: 25 Q
Load Capacitance: 1.0x 10712 F

represents the wire length. Suppose we keefq andC, fixed and

ously sizing the wire segments in routing trees to minimize weighted
delay. Each segment in the tree is sized uniformly, i.e. uniform wire
width per segment. Basically, GWSA-C is an iterative algorithm with
guaranteed convergence to a global optimal solution. In each iteration
of GWSA-C, the wire segments are examined one at atime; each time a
wire segment is uniformly re-sized optimally while keeping the widths
of the other segments fixed. We can incorporate our wire-sizing for-
mula into GWSA-C to size each wire segment nonuniformly. When
we apply our wire-sizing formula to size a wire segment in a tree,

varies£. WhenZ is small, optimal wire-sizing functions tend to be of R; should be set to be the total (weighted) upstream resistance in-
type-A, type-B, ortype-C. As we increasewire-sizing function types cluding the driving resistance, and tg should be set to be the total
will change to type-AB or type-BC whefi is of moderate size and will (weighted) downstream capacitance, including the load capacitances of

be of type-ABC wher( is large. Suppose we kegpfixed and varies
R4 andCr. WhenZ is small, as we increask, or decreas€’z,, op-

the sinks in the subtree. (See Fig. 8.) It can be shown that this modified
algorithm is extremely fast and always converges to a global optimal

timal wire-sizing function will change from type-A to type-B and thersolution.
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Cr:
while processing wire segment w 3 ) .
- the downstream capacitance of w 3

ws
Ry
the upstream resistance of w5 w3 we
w2 w4 w 7
wy
w

Wn

Fig. 8. Sizing a segment of a routing tree.

4 T T T T T T T T T
optimal —
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10 segments -----
. 5 segments
3.5 N
3 -
€
=
£
Q 25
2
o
s
2 -
15 |
1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

number of wire segments

Fig. 9. Approximating nonuniform wire sizing by uniform wire sizing.

V. EXPERIMENTAL RESULTS AND CONCLUDING REMARKS TABLE V
) ] ) RUNTIME AND MEMORY USAGE OF GWSA-C. [UNIT: RUNTIME
We implemented and tested our algorithm using C on a Sun Sparc  (MILLISECOND), MEMORY (KILOBYTES), STEP WIDTH (1 p:m)]

5 workstation with 16-MB memory. The parameters used are shown

in Table Ill. The results are given in Table IV. The first column # of wire GWSA-C No of
labeled “Precision Requirement” specifies the required accuracy of segments | Time | Memory || Iters
the wire width values. The second column shows the number of 100 10 32 9
. . 200 20 32 10

Newton—Raphson iterations. Our results show that even under very 1000 20 0 10
strict precision requirements, the number of iterations is at most seven. 5000 70 18 D
Thus, in practice, the optimal wire-sizing functions can be computed 10000 1120 108 15
in O(1) time and hence our method is extremely fast. 20000 9350 188 16
We also performed experiments to compare the nonuniform wire- 100000 13520 812 18
sizing solutions with the uniform ones in which wires are chopped into 1000000 | 141420 7884 19

different number of segments. The results are shown in Fig. 9. Wire

widths are plotted as the functions of positions on the wire segments.

It shows that the more segments a wire is chopped into, the closer th€&inally, we compare the runtime and memory usage of the optimal
solution is to our formula. When the wire is chopped into 1000 segire-sizing function with the GWSA-C on a single wire with 100 t¢ 10
ments, it can be shown that the corresponding curve and the nonwgigments. We use the Newton—Raphson method [8] to detebrfine
form wire-size curve are almost identical. the optimal wire-sizing function. Then, we substitéteito Equation
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(25) to getu. The runtime is only 0.021 35 ms, and the memory usageughere {um»} IS a double sequence of positive real con-
extremely low. The runtime and memory usage of GWSA-C is listed stants, ¢, 7 are nonnegative integers, and € (—oo, ),

Table V. It is obvious that the optimal wire-sizing function runs muche, n € Ny = {0, 1, 2,...}. The stability and oscillation of
more efficiently than GWSA-C. all solutions of (1.1) are important properties, which, however,
have not been carefully studied before. This brief is to introduce a
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Throughout, let

Asymptotic Behavior of Delay 2-D Discrete
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Logistic Systems {=o, =(e+1),.... =1, 0}

x{-7, —(r4+1),...,-1,0,1,2,...,n,...}.
Shu Tang Liu and Guanrong Chen ) ) ) )
In the following, the existence and uniqueness of the solution of
system (1.1) are discussed, along the line of the studies in [14, pp.
Abstract—Asymptotic behavior of all solutions of the delay two-dimen-  215-216], and [17, pp. 61-62].
sional logistic SySteMem41,n + G®m, nt1 = Umn@mn(l — T n_r) : . . .. . Y i
is investigated. Some sufficient conditions for the stability of this equation Notice thbat .fO(; a glven fL(;nCtl;cl)w(l’ 7) deflnedhonS_, it Isl ?qsy'to
are derived. Moreover, some sufficient and necessary conditions for oscil- con;truct, y n uction, a double §eguer{aej} that equalso(i, j)
lations of all solutions of this equation are obtained. on 2 and satisfies system (1.1) forj = 0, 1, 2, .... Indeed, one

Index Terms—Pelay two-dimensional (2-D) logistic system, linearization, can rewrite (1.1) as
oscillation, stability.

Tm+1,n — ﬂmnwmn(l — Tm—o, n—T) — ATm, n+1

I. INTRODUCTION and then use it with given initial conditions to calculate, successively,
L1005 £115 £20, L12, 215 T30y -+

In the engineering literature, particularly in the fields of digital fil- Since

tering, imaging, and spatial dynamical systems, two-dimensional (2-D)
discrete systems have been a focused subject for investigation (see, for
example, [1]-[3] and [7]-[13], and the references cited therein). Of es-
pecially interesting is the delay 2-D discrete logistic system w1 = porwor1(l = w—o1-7) = aoz
w20 = piox10(l — 2105, —7) — @11

10 =/100-T00(1 - JLa,fr) — aTo1

Lm+1,n + AT, n+1 = /J/7n1t$rrm(1 — Tm—o, IL—T) (ll)
T12 = po2xoz(l — ¥—g,2-r) — axo3
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