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Abstract

An efficient and accurate statistical static timing analysis (SSTA) algorithm is reported in this work which

features (a) a conditional linear approximation method of the MAX/MIN timing operator, (b) an extended canonical

representation of correlated timing variables, and (c) a variation pruning method that facilitates intelligent trade-off

between simulation time and accuracy of simulation result. A special design focus of the proposed algorithm is on the

propagation of the statistical correlation among timing variables through the nonlinear circuit elements. The proposed

algorithm distinguishes itself from existing block based SSTA algorithms in that it not only deals with correlations

due to dependence on global variation factors, but also correlations due to signal propagation path reconvergence.

Tested with ISCAS benchmark suites, the proposed algorithm has demonstrated very satisfactory performance in

terms of both accuracy and running time. Compared with Monte Carlo based statistical timing simulation, the output

probability distribution got from the proposed algorithm is within 1.5% estimation error while a 350 times speed-up

is achieved over a circuit with 5355 gates.

I. INTRODUCTION

The timing performance of deep-submicron micro-architecture will be dominated by several factors. IC manufac-

turing process parameter variations will cause device and circuit parameters to deviate from their designed value.

Low supply voltage for low-power applications will reduce noise margin, causing increased timing delay variations.

Due to dense integration and non-ideal on-chip power dissipation, rising temperature of substrate may lead to hot

spot, causing excessive timing variations. Classical worst case timing analysis produces timing predictions that are

often too pessimistic and grossly conservative. On the other hand, statistical static timing analysis (SSTA) that

characterizes timing delays as statistical random variables offers a better approach for more accurate and realistic

timing prediction.

Existing SSTA methods can be categorized into two distinct approaches: path based SSTA [1]–[4] and block

based SSTA [5]–[10]. The path based SSTA seeks to estimate timing statistically on selected critical paths. However,

the task of selecting a subset of paths whose time constraints are statistically critical has a worst-case computation
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complexity that grows exponentially with respect to the circuit size. Hence the path based SSTA is not easily

scalable to handle realistic circuits.

The block based SSTA, on the other hand, champions the notion of progressive computation. Specifically, by

treating every gate/wire as a timing block, the SSTA is performed block by block in the forward direction in the

circuit timing graph without looking back to the path history. As such, the computation complexity of block based

SSTA would grow linearly with respect to the circuit size. However, to realize the full benefit of block based SSTA,

one must address a challenging issue that timing variables in a circuit could be correlated due to either global

variations( [6], [7], [10]) or path reconvergence ( [5], [9]). As illustrated in the left hand side of Figure 1, global

correlation refers to the statistical correlation among timing variables in the circuit due to global variations such as

inter- or intra-die spatial correlations, same gate type correlations, temperature or supply voltage fluctuations, etc.

Path correlation, on the other hand, is caused by the phenomenon of path reconvergence, that is, timing variables

in the circuit can share a common subset of gate/wire blocks along their path histories. (Figure 1)

The importance of the path correlation comes from the fact that each gate/wire block in the circuit will have some

local variations which are independent to the rest of the circuit. These local variations will propagate towards the

circuit output and cause additional correlations due to the phenomenon of path reconvergence. Furthermore, these

correlations caused by sharing local variations, cannot be correctly captured by any algorithm that deals with global

variations only. So for clarity, the term path correlation used here and after specifically refers to the correlation

caused by the local variations of the common path history.
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(b) X and Y depend on p

Fig. 1: Global Correlations (left) and Path Correlation(right)

Several solutions have been proposed to deal with either of these two types of correlations. In [6], [7], [10], the

dependence on global variations is explicitly represented using a canonical timing model. However, these approaches

did not take into account the path correlations. In [9], a method based on common block detection is introduced

to deal with the path correlations. However, this method does not address the issue of dependence on global

variations. To the best of our knowledge, there is no existing method that has dealt with both types of correlations

simultaneously. We present a novel block based SSTA algorithm in this paper that is designed to consider both

global correlations and path correlations:

• We develop a novel method to conditionally approximate the MAX/MIN operator by a linear mixing operator.
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Using the pre-computed skewness, we are able to determine the linearity of the MAX/MIN operator analytically.

The linear approximation is then applied only when MAX/MIN behaves linear. When MAX/MIN is significantly

non-linear, the MAX/MIN evaluation is postponed with a form of Max Tuple.

• We extend the commonly used canonical timing model to be able to represent all possible correlations, including

the path correlations, between timing variables in the circuit. We further explore the sparse structure of the

extended canonical representations of the timing variable and dynamically drop the non-significant terms so

as to curtail the amount of storage and computation required for implementations.

Since min(X, Y ) = −max(−X,−Y ), in the interests of brevity, in the rest of this paper, we will only discuss

the MAX operator, with the understanding that the same results can be easily adapted to the MIN operator.

The rest of the paper is organized as following: In section II, previous block based SSTA methods are reviewed

briefly; Section III discusses the non-linearity of the MAX operator and our conditional linear approximation method;

Section IV describes the extended canonical timing model and the proposed SSTA algorithm with the technique to

reduce computation complexity. Section V presents a real implementation of of our algorithm in C/C++ and the

testing results with benchmark circuits; Section VI gives the conclusions.

II. A BRIEF REVIEW OF CURRENT SSTA ALGORITHMS

For the purpose of timing analysis, the circuit is modeled as a directed acyclic graph(DAG), called a timing

graph, where timing blocks are used to represent the gate/wires in the circuit. Signals propagating through these

blocks will add block delays into their arrival times. Block delays and arrival times are both called timing variables

of the circuit. The history or path history of an arrival time is then defined as the set of block delays through which

the signal ever passes.

A. Timing Variable Propagation

In statistical timing analysis, a timing variable is modeled as a random variable that is characterized by its

distribution of probability density function(p.d.f.) or equivalently, cumulative distribution function(c.d.f.). The goal

of statistical timing analysis is to estimate the distribution of the arrival time in the circuits given the distributions of

each block delay in the circuit. To accrue the over all timing delay distribution, the timing delay random variables

will be joined through two basic operators [5]:

• ADD: When an input arrival time X propagates through a block delay Y , the output arrival time will be

Z = X + Y

• MAX : When two arrival times X and Y merge in a block, a new arrival time Z = max(X, Y ) will be

formulated before the block delay is added.

In the ADD operation, if both X and Y are Gaussian random variables, then Z = X +Y will also be a Gaussian

random variable whose mean and variance can be found as:

µZ = µX + µY (1)

σ2
Z = σ2

X + σ2
Y + 2cov(X, Y ) (2)
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where σXY = cov(X, Y ) = E{(X − µX)(Y − µY )} is the covariance between X and Y .

Denote Z = max(X, Y ) to be the output of the MAX operator. Since MAX is generally a nonlinear operator,

Z will not have Gaussian distribution even if both X and Y are Gaussian. However, in this situation, the mean,

variance and skewness of the distribution of Z have been already derived analytically by Clark [11] in 1961 as

follows:

µZ = µX · Q + µY (1 − Q) + θP (3)

σ2
Z = (µ2

X + σ2
X)Q + (µ2

Y + σ2
Y )(1 − Q) + (µX + µY )θP − µ2

Z (4)

κ3
Z =

1
σ3

Z

{
(µ3

X + 3µXσ2
X)Q + (µ3

Y + 3µY σ2
Y )(1 − Q) − µZ(3σ2

Z + µ2
Z)

+
P

θ

(
(µ2

X + µXµY + µ2
Y )θ2 + 2σ4

X + σ2
Xσ2

Y + 2σ4
Y − 2σXY (σ2

X + σ2
Y ) − σ2

XY

)}
(5)

where θ = σ(X−Y ). P and Q are the p.d.f. and c.d.f. of a standard normal distribution evaluated at λ =

µ(X−Y )/σ(X−Y ):

P (λ) =
1√
2π

exp(−λ2

2
) and Q(λ) =

∫ λ

−∞
P (x)dx (6)

The skewness of random varaible Z is defined as:

κZ =
3
√

E{(Z − µZ)3}
σZ

(7)

B. Linear Approximation of MAX Operator

Although Z = max(X, Y ) does not have a a Gaussian p.d.f. even both inputs X and Y are Gaussian-distributed,

in the interests of simplicity, it is still desirable by many SSTA researchers to find a Gaussian random variable that

approximates Z in some way ( [6], [10]). In [6], the output of the MAX operator, Z is approximated by a Gaussian

random variable Ẑ which is a linear combination of X , Y , and an additional independent Gaussian random variable

∆:

Z = MAX(X, Y ) ≈ QX + (1 − Q)Y + ∆ = Ẑ (8)

where Q is defined in Equation (6), and is called tightness by the authors in [6]. The purpose of the additional

random variable ∆ is to ensure that the mean and the variance of Ẑ match those of Z as specified in the Clark’s

formula (3) and (4).

In [11], it has also been shown that if W is a Gaussian random variable, then the cross-covariance between W

and Z = MAX(X, Y ) can be found analytically as:

cov(W, Z) = Q · cov(W, X) + (1 − Q)cov(W, Y ) (9)

Substituting equation (8), it is easy to verify that

cov(W, Ẑ) = Q · cov(W, X) + (1 − Q)cov(W, Y ) = cov(W, Z)
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Fig. 2: Existing Linear Approximation underestimates MAX Distribution at High Probability level

Hence, a nice property of the approximator Ẑ shown in equation (8) is that the cross-covariance between Z and

other timing variable W is preserved when Z is replaced by Ẑ .

While this approximation formula is simple, it doesn’t work safely when the non-linearity of the MAX operation

is significant and the output of MAX operator is significantly non-Gaussian. A simple example is illustrated in

figure 2 where the left panel shows the two independent input Gaussian random variables and the right panel shows

the c.d.f.s of max(X, Y ) from Monte Carlo simulation and linear approximation. It can be seen from figure 2(b)

that the existing linear approximation will underestimate the distribution at high probability level. This behavior is

risky since decisions made upon the estimated delay may result in excessive design failure

C. Canonical Timing Model

Previously, a canonical timing model [6], [7], [10] has been proposed to address the delay correlations through

shared global variations. In this model, the block delay is represented as a sum of three terms:

ni = µi + αiRi +
∑
j=1

βi,jGj (10)

where ni(i = 1, 2, ...) is the random variable corresponding to the the i th block delay in the timing graph; µi is

the expected value of ni; Ri ∼ N(0, 1), (called local variation), represents the localized statistical uncertainties

of ni; Gj ∼ N(0, 1) represents the jth global variation; Ri and {Gj(j = 1, 2, ...)} are additionally assumed to

be mutually independent; the weight parameter α i (named local sensitivity) and βi,j(named global sensitivities)

are deterministic constants, explicitly expressing the amount of dependence of n i on each of the corresponding

independent random variables.

With this canonical representation, the variance of a block delay n i and its covariance with another block delay
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nk can be evaluated as:

σ2
ni

= E{(ni − µi)2} = α2
i +

∑
j

β2
i,j (11)

cov(ni, nk) = E{(ni − µi)(nk − µk)} =
∑

j

βi,jβk,j (12)

However, if arrival times are also expressed in this canonical model, the path correlation between them due to

sharing local variations because of path reconvergence will incorrectly be ignored. For example, in Figure 1(b),

both arrival times X and Y include a common path history of block p. However, the local variation of block p, R p

is no longer a part of the canonical representation of arrival times X and Y . Hence, the path correlation between

X and Y due to Rp is incorrectly dropped.

III. NON-LINEARITY OF MAX OPERATOR

For Gaussian inputs, the linearity of the MAX operator will be equivalent to the Gaussianity of the output.

Using Monte Carlo simulation, the Gaussianity of the output can be evaluated with a method called QQ-Plot. [12]

Specifically, if the output is Gaussian, then the simulated output of the MAX operator will show a straight line in

its QQ-Plot against a standard Gaussian distribution. And if the MAX output is non-Gaussian, such QQ-Plot will

deviated from linear. The more the non-Gaussianity of the MAX output, the worse the linearity of such QQ-Plot.

Since the linearity of the QQ-Plot can be quantitatively represented by the linear correlation coefficient of the QQ-

Plot, the Gaussianity of the output of the MAX operator can be statistically and quatitatively measured. However, it

will be very expensive if we run extensive Monte Carlo simulation during every step of MAX operation in timing

analysis. So it is desirable to establish a more convenient criteria to determine the linearity of the MAX operator.
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Fig. 3: Skewness of Z = max(X, Y ) given X and Y are Gaussian v.s. Non-Linearity of MAX Operator

Determined by Monte Carlo simulation

It is well known that skewness is not a Gaussianity index for a general random variable since there are distributions

which are symmetric but non-Gaussian. However, to measure the linearity of the MAX operator with Gaussian inputs,
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skewness of the MAX output will be a good choice. Figure 3 shows the relationship between the non-linearity of

the MAX operator and the skewness of Z = max(X, Y ) for Gaussian inputs X and Y . The scattering points in the

figure represent 1000 random samples of the relative mean, relative variance and the correlation of Gaussian random

variables X and Y . The non-linearity of the MAX operator for each set of randomly sampled mean, variance and

correlation is determined by QQ-Plot method with 10,000 Monte Carlo simulations. It is very clear in the figure that

the skewness of the MAX output has significant positive correlation with the non-linearity of the MAX operator.

Since skewness of the MAX output given Gaussian inputs can be analytically computed by equations developed

by Clark [11], it is suitable to use skewness as an accurate and efficient measurement for the non-linearity of the

MAX operator.

A. Non-Linearity Condition of MAX Operator

It is clear that the linearity of the MAX operator is heavily dependent on its input parameters. Since we have

a good measure of the linearity of the MAX operator, it is ready to study how the linearity changes when inputs

vary.
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(a) 3D plot at ρ = 0
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(b) Contour plot at ρ = 0
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(c) Contour plot at ρ = −0.5
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(d) Contour plot at ρ = 0.5

Fig. 4: Skewness of max(X, Y ) when Y ∼ N(0, 1)

Assuming the standard deviations σY ≥ σX in max(X, Y ), then no generality will be lost if the two variances

are assumed to be: σX = σ ∈ [0, 1] and σY = 1. This simplification is valid because of the scaling property of
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the MAX operator: max(cX, cY ) = c ·max(X, Y ) for any positive constant c. Aware the invariance of the MAX

operator in the constant shifting as max(X, Y ) + c = max(X + c, Y + c), both random variables of X and Y are

shifted by the mean of Y and so that the mean parameters will satisfy the range of µ X = µ and µY = 0. The last

parameter that needed to specify the two input random variables involved in a MAX operation is their correlation

coefficient ρ which must be in the range of −1 ≤ ρ ≤ 1. With such parameter settings, the two Gaussian random

variables X and Y are fully determined. And the skewness of Z = max(X, Y ) are computed using equations

developed by Clark [11] and are shown in Figures 4.

From the figures, it is clear that in most of the cases, the skewness is zero which means Z = max(X, Y ) is

normally distributed and MAX operator is linear. As a thumb rule, the non-linearity of MAX operator is significant

when the following Non-Linear Condition satisfies:

Given X and Y are Gaussian, max(X,Y) will be significantly non-Gaussian if X and Y have very similar

mean but very different variance or if X and Y have similar mean and variance but very negative correlation

B. Conditional Linear MAX Approximation

Given two Gaussian random variables X and Y, Z = max(X, Y ) could be significantly skewed if the non-linear

condition is satisfied. If the MAX operator is significantly non-linear, significant error will occur if a linear operator

is forced to approximate the MAX operator. But for the purpose of timing analysis, it is not necessary to explicitly

compute the MAX output at every step.

1) Max Tuple: During timing analysis, arrival time propagates from block to block with two elemental operations:

ADD and MAX. If during a propagation step of MAX, max(X, Y ), the output arrival time is not Gaussian, no

actual computation will be done and the output will be simply recorded as a max tuple: Mt{X, Y }. With such

max tuples, the arrival time propagation will have the following computations:

• ADD: a gate/wire delay, D, is added into a max tuple Mt{X, Y } as:

Mt{X, Y } + D = Mt{X + D, Y + D}

• aMAX: an arrival time, A, is MAXed with a max tuple Mt{X, Y } as:

max(A, Mt{X, Y }) = Mt{A, X, Y }

• tMAX: two max tuples are MAXed together:

max(Mt{X, Y }, Mt{U, V }) = Mt{X, Y, U, V }

2) Tuple Size: To practically implement such tuple-based MAX evaluation, the number of arrival times in the

max tuple, i.e. the tuple size, has to be maintained as small as possible. This is realized by the obvious combinational

rule of max tuple as:

Mt{A, X, Y } = Mt{max(A, X), Y } = Mt{A, max(X, Y )} = Mt{X, max(A, Y )}
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so if any two Gaussian random variables in the max tuple doesn’t satisfy the non-linear condition, then they can

be replaced by a new Gaussian random variable by approximating the MAX with a linear operator and so that the

size of the max tuple is reduced. This reduction process will be done iteratively to minimize the tuple size.

Such kind of tuple size reduction method is realized by associating each max tuple with a skewness matrix

which stores the output skewness if pairs of random variables in the max tuple are actually MAXed out. And also

a threshold of skewness κth is set before-hand to decide if the MAX result is Gaussian or non-Gaussian. Also, to

prevent the explosion of the tuple size, a safe-guard maximum allowed size for max tuple is also set and if any

of the tuple size exceeds the maximum size, the skewness threshold will be increased to tolerate more tuple size

reduction.

Finally, in the primary output of the circuit, if the circuit delay is reported as max tuple, the output distribution

can be easily evaluated by Monte Carlo simulation. For limited size of max tuple, such evaluation is efficient and

accurate.

IV. EXTENDED CANONICAL TIMING MODEL

The canonical timing model [6], [7], [10] is a powerful tool to represent the numerous timing variables for a

given circuit. However, as pointed out in the previous section, in its original format, it can only handle timing

correlations caused by global variations. In this work, we propose an extended canonical timing (ECT) model that

is capable of capture all correlations between any pair of timing variables in the circuit be it a block delay or an

arrival time.

A. Extended Canonical Timing Model

Assume that there are N gate/wire blocks and M global variations in the timing graph, if every block delay

is modeled by the canonical format shown in equation (10), and MAX is approximated by a linear combination

operator, then every time variable, including all block delays and arrival times will then have the extended canonical

timing(ECT) expression as:

X = µX +
N∑

i=1

αX,iRi +
M∑

j=1

βX,jGj (13)

where Ri ∼ N(0, 1) is the local and independent variation only related with block i, G j ∼ N(0, 1) is the jth

global variation, αX,i and βX,j are the corresponding sensitivity factors. To differ our approach from the existing

canonical timing model, the word “extended” is used to indicate that the local variations are additionally included to

the timing model. With such “extended” timing model, both global and path correlations can be handled elegantly.

More specifically, global variations are represented by the set of global sensitivity terms {β X,j}, and dependence

on path history are represented by non-zero local sensitivity terms α X,k .

Equation (13) can be rewritten in a compacted vector format as

X ∼ L(µX , αX , βX) = µX + α∗
Xr + β∗

Xg (14)
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where “*” means transpose and r ≡ [R1, · · · , RN ]∗ ∼ N(0, I) and g ≡ [G1, · · · , GM ]∗ ∼ N(0, I) are mutually

independent local variation vector and global variation vector respectively. 0 is a zero vector and I is the unit matrix.

αX = [αX,1, αX,2, ..., αX,N ]∗ and βX = [βX,1, βX,2, ..., βX,M ]∗ are deterministic local and global sensitivity

vectors.

Authors in [10] proves the correlation evaluation formula between timing variables represented by the canonical

timing model of equation (10). We here prove a similar formula for correlation evaluation between time variables

expressed with the ECT model as equation (13) or (14).

Theorem 1: Given timing variables X ∼ L(µX , αX , βX) and Y ∼ L(µY , αY , βY ), the correlation between

them can be evaluated as:

cov(X, Y ) = α∗
XαY + β∗

XβY (15)

Proof: By definition:

cov(X, Y ) = E{(X − µX)(Y − µY )}

= cov(α∗
Xr, α∗

Y r) + cov(α∗
Xr, β∗

Y g) + cov(α∗
Y r, β∗

Xg) + cov(β∗
Xg, β∗

Y g)

= E{α∗
Xrr∗αX} + E{β∗

Xgg∗βX} = α∗
XαY + β∗

XβY

where the independence of r and g is applied.

to get the variance of a time variable, it is easy to prove the following corollary:

Corollary 1: Given timing variable X ∼ L(µX , αX , βX), its variance is:

σ2
X = α∗

XαX + β∗
XβX (16)

which is actually the special case when X = Y of theorem 1.

B. SSTA Algorithm

Before timing analysis, the delay sensitivities of each individual gate/wire are extracted from its Spice model and

a gate/wire delay library is then formed. This library, together with the circuit being analyzed, serves as the input

of the SSTA algorithm. A SSTA algorithm will then calculate the distributions for all arrival times in the entire

circuit by carrying out ADD and MAX operation at each gate/wire block. The overall data flow of the algorithm is

summarized in figure 5 where the timing graph in the SSTA is represented by a file with standard delay variance

correlation format(sdvcf) where both gate/wire delays and connections among gate/wires are specified.

Assuming X ∼ L(µX , αX , βX) and Y ∼ L(µY , αY , βY ), the output distribution of an ADD operation Z =

(X + Y ) ∼ L(µZ , αZ , βZ) can be easily computed as:

µZ = µX + µY ; αZ = αX + αY ; βZ = βX + βY ; (17)
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Fig. 5: Block-Based SSTA Algorithm

According to the linear MAX approximation equation (8), the output distribution of MAX operator Z = max(X, Y )

will be:

µZ = QµX + (1 − Q)µY + θP ; αZ = QαX + (1 − Q)αY ; βZ = QβX + (1 − Q)βY ; (18)

Clearly the complexity of a single iteration of the SSTA algorithm comes from the sensitivity vector computation

and the correlation evaluation involved in the MAX operation. Assuming there are totally M global variations and

N gate/wire blocks in the circuit, The overall SSTA complexity will then be O[(N + M)N ].

C. Exploration of Sparsity

While working with benchmark circuits, we noticed that many components in the variation vectors have very

small sensitivity values, indicating that their contributions to the overall correlation is insignificant. By setting these

small coefficient to zero, the sensitivity vector will become a sparse vector that contains many zero components.

Motivated by this observation, we apply a drop-and-lump method to exploit the sparsity of the sensitivity vector

and to further decrease the average complexity of the SSTA algorithm.

For this purpose, a drop threshold is selected such that if αX,i or βX,j is smaller than this threshold, it is deemed

to have small value and will be dropped from the sensitivity vector. However, dropping α X,i or βX,j with small

magnitude directly is the same as applying truncation to the sensitivity vector. In subsequent computations, the

quantization error may accumulate, causing non-negligible error. This is a problem that can not be overlooked for

large circuits as demonstrated in the appendix I. Our solution to this problem is to lump those dropped components

into a single correction term

xlump =
√∑

x2
dropped Components (19)

Using this drop and lump method, the average number of non-zero terms in global sensitivity vector β will be

MC and the complexity of the proposed SSTA algorithm will be of O[(M C + Γ)N ] where the average number

of non-zero terms in local sensitivity vector α is Γ. So what is really dropped in the local sensitivity vector α

during computation is then the path correlation and the length of the local sensitivity vector actually gives a good

indication to the extent of path correlation in the circuit. So Γ is given a special name of path correlation length

for a given drop threshold.
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Theoretically speaking, if a block is not in any statistically critical paths, its variation will be automatically

dropped. On the other hand, if the block is in the critical path but is not statistically important, it will be dropped

too. Furthermore, the importance of the variation will decrease after it propagates through a long path. In real

circuits, usually only a few blocks in the circuit will survive the arrival time propagation and so that Γ << N and

MC << N . The computation complexity of the proposed method will be practically O[(Γ+M C) ·N ] ≈ O[N ] and

a significant reduction of complexity is achieved with the above drop and pool mechanism although it is important

know that the actual complexity reduction is highly dependent on the topology of the circuit being analyzed.

V. SIMULATIONS AND DISCUSSIONS

Our SSTA algorithm, named as CLECT, has already been implemented in C/C++ and tested by benchmark

circuits. Before testing, however, all benchmark circuits are re-mapped into a library which has gates of not, nand2,

nand3, nor2, nor3 and xor/xnor. All library gates are implemented in 0.18µm technology and their delays are

characterized by Monte Carlo Spice simulation with Cadence tools assuming all variation sources follow Gaussian

distribution.

For illustration purpose, only three parameter variation are considered global: channel length(L), supply volt-

age(Vdd) and temperature(T). All other variation sources, specified in the 0.18µm technology file, are assumed to

be localized in the considered gate only. Furthermore we don’t address the spatial dependency of the gate delays

just for demonstration purpose. In real life, gate delay parameters are position dependent and our method is still

applicable.

Extensive Monte Carlo simulations with 10,000 repetitions are used as “Golden Value” for each benchmark

circuit. Each repetition is a process of static timing analysis by fixing global and block variation into a set of

randomly sampled values. The global variations are sampled once for each repetition while block variation for each

gate is sampled every time when the gate delay is computed.

A. Accuracy Improvement with Max Tuple

One simple circuit is given in figure 6 where the overall delay and all internal MAX operators are significantly

non-linear as revealed by Monte Carlo simulation shown in figure 7. The skewness of the output distribution is

κ = 2.2 which is significantly larger than zero.

Fig. 6: Circuit whose timing variables are NOT Gaussian

As shown in figure 7, it is very clear that for circuit where MAX operators are significantly non-linear, the existing

linear approximation cannot correctly capture the c.d.f. behavior. Especially, the existing method significantly
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underestimate the distribution at the high probability level and so that it is risky to use such distribution to predict

the circuit performance.
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Fig. 7: Comparison of c.d.f. for Non-Linear Circuit between (1)existing linear approximation (2)conditional

linear approximation with skewness threshold 0.5 and final tuple size of 3.

Our conditional linear MAX approximation method, on the other hand, matches the exact distribution much better

than the existing method. Especially, at the high probability level , the computed distribution is almost exact the

same as the one got from Mont Carlo simulation. Such significant accuracy improvement over the existing method

makes our method more suitable to predict the performance for non-linear circuits.

B. Accuracy Improvement by Including Path Correlation

Our SSTA method is also tested in the ISCAS benchmark suite. From Monte Carlo simulation, all ISCAS

combinational circuits are Gaussian circuits whose MAX operators can be well approximated by linear operators.

Both our conditional linear MAX approximation method and existing linear approximation will be good MAX

approximation method for these circuits. This nice property comes from the fact that for arrival times in these

circuits, bigger mean usually means bigger variance and arrival times are usually positively correlated. So the

non-linear condition will not be satisfied for them.

Table I summarizes the error of the arrival time distribution parameters computed at the primary output for each

testing circuit from three methods: (1) our method of CLECT; (2) NoPath where the existing canonical timing model

is used and no path correlation is considered; (3)NoCorr where neither global correlation nor path correlation is

considered. µ and σ are mean and standard variation of the distribution. τ 97 = µ + 2σ is the 97% delay quantile

estimated assuming output delay distribution is Gaussian.

From Table I, it is very clear that method NoCorr fails to give reasonable variance estimation because no

correlation is considered. This is a good example demonstrating the importance of correlations in SSTA. Table I
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Circuit Mean Error(δµ) Variance Error(δσ)

CLECT NoPath NoCorr CLECT NoPath NoCorr

c432 0.79% 4.64% 8.05% 0.50% 1.50% 89.8%

c499 1.04% 4.82% 6.99% 0.89% 0.34% 88.5%

c880 0.15% 1.22% 1.81% 0.53% 0.79% 93.8%

c1355 1.07% 5.81% 6.32% 0.28% 0.95% 95.0%

c1908 0.75% 2.93% 3.66% 0.27% 0.24% 91.8%

c2670 0.35% 3.09% 4.58% 0.00% 0.84% 94.3%

c3540 0.19% 3.75% 4.10% 0.66% 0.36% 95.3%

c5315 0.23% 3.12% 6.06% 0.11% 0.09% 92.8%

c6288 0.53% 8.17% 8.68% 0.65% 1.06% 98.8%

c7552 0.25% 3.27% 6.05% 1.46% 1.09% 92.5%

TABLE I: Distribution Error Respecting to Monte Carlo Results: (1)CLECT:Our Method with Extended

Canonical Model;(2)NoPath: Existing Canonical Model where no path correlation is consideered;(3)NoCorr:

neither global correlation nor path correlation is considered

also shows that method NoPath has significantly larger error in mean estimation than CLECT although it shows

similar accuracy in variance estimation. As a consequence, method NoPath has significantly larger error in 97%

delay quantile estimation. This consistently larger error in all simulated circuits shows the importance to use the

extended canonical timing model and consider the path correlations.

To further elaborate the accuracy improvement of CLECT over NoPath, Figure 8 shows the p.d.f. and c.d.f. for

circuit c6288 from three methods: Mont Carlo, CLECT and NoPath. Apparently enough, CLECT shows excellent

accuracy since it considers path correlation. And NoPath has significant distribution shift because it uses canonical

timing model and path correlation is dropped.
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Fig. 8: p.d.f. and c.d.f. comparison for c6288 from three methods
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C. Performance and Path Correlation Length

It has been mentioned in Section IV-C that path correlation length (Γ) is an interesting macro property of the

simulated circuit and gives a good indication of the extent of the path correlation existing in that circuit. For the

above ISCAS circuits, the path correlation length(Γ) at drop threshold of 1% is summarized in Table II. where the

run time improvement over Monte Carlo simulation is also shown.

Name c432 c499 c880 c1335 c1908

Gate Counts 280 373 641 717 1188

Γ 22.0 11.1 14.2 19.3 27.0

CPU Improve 217x 273x 297x 268x 239x

Name c2670 c3540 c5315 c6288 c7552

Gate Counts 2004 2485 3865 2704 5355

Γ 15.4 21.2 14.4 80.9 16.0

CPU Improve 399x 350x 220x 22x 355x

TABLE II: Path Correlation Length(Γ) and CPU time Improvement over Monte Carlo Simulation

From Table II, we can firstly conclude that the correlation length Γ is much smaller than the circuit size and

basically independent on the circuit size since it remains about 10 − 20 when circuit size changes dramatically.

This observation helps the conclusion we made before about the complexity reduction of our method by using the

technique of flexible vector format.

Secondly, the only exceptional high path correlation length among the tested circuits happens with the circuit

c6288 which is known as a 16-bit array multiplier. Since there are large amount of equal delay paths in the circuit,

large path correlation length is natural: Fewer local sensitivities can be dropped due to the equal importance.
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Fig. 9: Run time Complexity of Our SSTA Algorithm

Shown in the figure 9 is the run time complexity of the proposed timing algorithm where the run time and circuit

size of all circuits except c6288 are shown. From the figure, it is clear that the run time is almost linear with
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respecting to the circuit size even when the circuit size changes dramatically. This result clearly demonstrates our

complexity discussion in section IV-C.

To study the relationship between path correlation length and the accuracy of the SSTA method, an experiment

is conducted for circuit c6288 and results are shown in figure 10 where the error in τ 97 and path correlation length

are both plotted against the drop threshold. It is clear that the path correlation length drops sharply when the drop

threshold changes slightly from zero and maintain almost constant after that. But the error changes steadily when

drop threshold changes. This phenomenon proves the efficiency of the drop mechanism introduced in this work

since it means we can sacrifice very little accuracy to gain very significant reduction in the path correlation length

and so as to save significant amount of CPU time.
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Fig. 10: Path correlation length(Γ) and Error in 97% delay (δτ 97) when drop threshold changes

VI. CONCLUSIONS

This paper presents a novel method for block-based statistical static timing analysis. We firstly disclose a new

method to approximate the MAX operation with a linear operator assisted by the skewness-based linearity evaluation.

Secondly we extend the commonly used canonical timing model into an “extended” version to represent the possible

occurred path correlation. With these theoretical progress, we are able to evaluate and propagate both global and

path correlation in the circuit timing graph. We also design a novel algorithm, CLECT which treat both global

and path correlation simultaneously and systematically. This algorithm, with the help with a drop-and-lump method

achieves high accuracy and high performance at the same time as tested by ISCAS circuits and compared with

Monte Carlo “golden values”.

APPENDIX I

IMPORTANCE OF LUMPING DROPPED VARIATIONS

Using circuit c499 as the example, the variation lumping method introduced in section IV-C is compared with a

simple dropping method at drop level of 100%. From table III, the advantage of using the lumping mechanism is

clear: the estimation error for 97% delay quantile(τ97) is improve from the 6.1% of the simple dropping mechanism

to the 3.4% when the lumping mechanism is used.
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Method Simple Dropping Lumping MonteCarlo

τ97 1343ps 1482ps 1431ps

TABLE III: Error Comparison with Approach of [6]
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APPENDIX II

ANSWER REVIEWING QUESTIONS

The authors would like to thank anonymous reviewers for their very insightful and constructive comments. We

realize that the MAX approximation method in the last draft gets the most questions, so in this revised manuscript,

we have included our most recent research advances in addition to the suggested changes by the reviewers. We

demonstrate the drawback of the existing linear approximation method in section II-B. We propose in this draft a

new MAX approximation method to make it flexible and accurate for both linear and non-linear cases.(section III)

By using skewness, we are able to decide the linearity of the MAX operator analytically. So the linear approximation

is conditionally applied when MAX is linear. While MAX is non-linear, we delay the evaluation with a form of

Max Tuple. We have also clearly demonstrated the advantages of such conditional linear approximation over the

existing linear approach by using an example circuit in section V-A.

Below are our answers to specific comments.

A. Reviewer Number 1

Q. ...Therefore, it is desirable to explain the test case setup having so good linear behavior.

A. We have included the explanation in section V-B the reason why the ISCAS circuits behave so linear based

on the discussion of the non-linear condition in section III. We also include a non-linear example in section

V-A to show the advantage of our conditional linear approximation method.

Q. The paper says ”... rising temperature of substrate may lead to hot spot causing excessive timing variations.”

However this timing variations are mainly deterministic and repeatable from chip to chip. Therefore statistical

timing analysis is not a proper technique to solve this problem.

A. We believe that there will be some random components in the circuit temperature fluctuation due to the

randomness of the power dissipation during run time although we agree that the temperature may still have

some deterministic distribution pattern which is predictable in design time. Our approach is useful for all

random variations, not specifically restricted in the thermal noise which is only one possible source and may

be even not important.

Q. ...It is not clear the meaning of the expression ”block by block”. What kind of ”blocks” are assumed in the

timing graph

A. The meaning of “block” is clarified in this draft to be the gate/wire associated with time delay in the circuit.

Q. ...The only difference is considering independent random variables correspondent to each gate. Therefore

it is more correct to say about including all gates delay variations into the canonical form. The previous

publications avoided doing it because for real industrial circuits that kind of analysis is infeasible due to too

many gates and the corresponding independent variables.

A. We use the word “extended” just to indicate this is an extension of the existing and generally used canonical

model. This extension, together with the intelligent variation pruning method, provide a good way to balance

the need for high accuracy and less run time. As illustrated in section V-B, the inclusion of the path correlation
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increase the accuracy significantly while the number of extra terms remains very small. Such beneficial property

is more detailed explained in section V-C figure 10: small amount of extra terms will have big increase in

accuracy.

Q. ...If it is a format it is good to explain it by a figure. If it means the technique to drop small terms, or merge

them together into one term then it is not a format. Anyway dropping smaller terms is not anything novel. All

approximations are based on that.

A. We name it as a format to indicate the way we implement it. It is really a technique to drop small items. But

it is different than normal dropping since it pool the dropped terms together to reduce the cumulative error

that the simple dropping will result in.

Q. ....It is not clear the goal of using non-traditional definition of timing graph and non-traditional terminology

which is inconvenient for readers getting used to traditional terminology of timing analysis

A. We use such non-traditional definition since it reflects the actual way we implement our algorithm. To avoid

the confusion, we remove the terminologies of “nodes” and “edges”. Instead, we directly base our discussion

on “gate/wire delay” and “arrival time”.

Q. ...Real industrial circuits are usually optimized and therefore they have lots of equally or almost equally critical

paths. Otherwise there would be no necessity in block-based timing analysis. If a circuit has only few critical

paths then path based timing analysis is the best tool. It is even possible to apply accurate simulation for few

critical paths.

A. We agree with that the extension of the complexity reduction will depend on the topology of the circuit. But

we argue that in the case of a lot of equal-length paths, the importance of a gate/wire delay will decrease

exponentially when signal propagates through logic levels since they will be multiplied by a factor of 0.5 at

each logic level. (section IV-C)

B. Reviewer Number 2

Q. ...So, throwing it away may not be proper. Some deeper understanding of these issues and clarification by

the authors is needed before the claim that the non-linearity of max means that we don’t need to match the

covariance can be accepted.

A. We have changed the way to approximate the MAX operator. With the current method, the dependency of of

the MAX output on its input, reflecting by the covariance, is preserved. And the MAX is explicitly evaluated

only when it is linear and linear approximation is good.(section III)

C. Reviewer Number 3

Q. ...In Subsection A, the authors are incorrect in stating that there is no benefit in preserving the correlation

structure during the max() approximation. It is important to note that one of the purposes of timing is to

provide insights/directions during the design/synthesis process and hence this contention is incorrect because

an accurate picture of the correlation to the global sources of variations will give us better guidance during
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the design process, For Ex., undue sensitivity to a global PFET parameter (ex. mobility) in a particular path

can be avoided. In fact, by always picking the minimum of the sensitivities during the max(), this method drops

this information.

...In Subsection B, the linear approximation error analysis is provided and Fig. 3 shows the error approximation

of the two methods as a function of the difference between the mean of two independent random variables. In

fact, the method in [6] and [10] can be shown to minimize the error function in equation (16). For a simple

demonstration, X = a z + b, Y = c z + d, can be used as a 1-D example and the integration performed in the

z space. Further, Fig. 3 provides an incomplete picture of the approximation error in the different methods,

since the error depends not just on the mean difference between X and Y, but also the correlation between

them, which is not included here.

A. We changed the way to compute the linear approximation of MAX operator. We will use the existing linear

approach only when MAX operator behaves linear. If it is really non-linear, the evaluation is delayed with a

form of max tuple.

Q. Subsection C, shows one example circuit with results from the two methods and Table I, provides only the

97% point compared to the ”golden” MC metric. This table should be expanded to show other statistical

quantities too, similar to Table III, because despite the non-Guassian nature of the actual distribution, it is

still of significant interest to the designer to know if the distribution is shallow or not as well as the skew in

it (namely the statistical quantities: mean, variance, skew, kurtosis)....

A. Our new method matches the c.d.f. got from Monte Carlo method much better than the existing method shown

in figure 6.

Q. ...Since the primary justification for the drop-threshold technique is memory/CPU usage, it should be tabulated

in Table V., to allow the reader to judge its utility and cost

A. It is done in this draft.

Q. A better explanation of ”NoPath” and ”NoCorr” in Table III is needed....

A. It is done in the text and the cation of the table as well.

Q. Is there a type on Page 16, first line giving the tau97 = mu + 2sigma Did the authors mean ”+ 3 sigma”

here ?

A. It is not a typo. For single side range, 97% percentile is equal to mu + 2 sigma.
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