
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 4, APRIL 2004 565

Short Papers_______________________________________________________________________________

Zero Skew Clock-Tree Optimization With Buffer
Insertion/Sizing and Wire Sizing

Jeng-Liang Tsai, Tsung-Hao Chen, and Charlie Chung-Ping Chen

Abstract—Clock distribution is crucial for timing and design con-
vergence in high-performance very large scale integration designs.
Minimum-delay/power zero skew buffer insertion/sizing and wire-sizing
problems have long been considered intractable. In this paper, we
present ClockTune, a simultaneous buffer insertion/sizing and wire-sizing
algorithm which guarantees zero skew and minimizes delay and power in
polynomial time. Extensive experimental results show that our algorithm
executes very efficiently. For example, ClockTune achieves 45 delay im-
provement for buffering and sizing an industrial clock tree with 3101 sink
nodes on a 1.2-GHz Pentium IV PC in 16 min, compared with the initial
routing. Our algorithm can also be used to achieve useful clock skew to
facilitate timing convergence and to incrementally adjust the clock tree for
design convergence and explore delay–power tradeoffs during design cy-
cles. ClockTune is available on the web (http://vlsi.ece.wisc.edu/Tools.htm).

Index Terms—Buffer insertion, buffer sizing, clock tree, optimization,
wire sizing, zero skew.

I. INTRODUCTION

In the multigigahertz design era, clock design plays a crucial role in
determining chip performance and facilitating timing and design con-
vergence. First, clock skew directly affects chip performance in a close
to one-to-one ratio since it has to be counted as cycle-time penalty.
Second, incremental clock-tree adjustment enables fast design conver-
gence by avoiding the potentially divergent design iterations. Since de-
signs are subjected to change on a daily basis, the clock trees need to be
incrementally adjusted accordingly with minimum changes to ensure
acceptable clock skew. Third, since interconnect delay dominates over
gate delay, timing plans often cannot be met due to physical effects.
Recently, useful skew [2] concepts have also been widely proposed to
speed-up timing convergence in order to compensate for the timing un-
certainties resulting from the physical layout. From the above analysis,
it is crucial to develop clock tuning algorithms that can balance clock
skew with minimum adjustments.

An excellent survey of interconnect optimization techniques can be
found in [3]. Among the techniques suitable for clock-tree optimiza-
tion are buffer insertion/sizing and wire sizing since these do not need
to modify the existing routing. In [4], a three-stage optimization al-
gorithm is proposed to minimize the delay and skew of a clock tree.
A reported 27� delay improvement was achieved by buffer insertion
and buffer sizing. In [5], an iterative algorithm performswire sizing one
segment at a time and about 1.5� to 3� improvement on minimum
delay was observed. Two major approaches have been used to inte-
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grate buffer insertion/sizing and wire-sizing techniques for delay and
power optimization. In [6]–[8], the simultaneous buffer insertion/sizing
and wire-sizing problems are formulated as optimization problems, in
which the maximum delay of each sink node is constrained. In [9]
and [10], bottom-up dynamic programming algorithms, based on the
method in [11], are used to find optimal solutions for a subtree and
propagate the solutions up toward the root node. These methods per-
form optimizations without modifying the clock routing, but do not
guarantee zero skew.

Recent work [12] integrates wire sizing into the deferred-merging
embedding (DME) algorithm [13], which allows a zero skew clock
tree to benefit from wire sizing and buffer insertion. However, the zero
skew property is achieved by moving the merging points and the clock
routing might be changed to accommodate the skew caused by de-
sign changes. This may affect the detail routing. To the best of the
authors’ knowledge, there is no existing simultaneous wire sizing and
buffer insertion/sizing algorithm which finds the minimum-delay and
minimum-power zero skew solutions without modifying the existing
routing.

In this paper, we propose a novel clock-tuning algorithm, Clock-
Tune, which considers buffer insertion/sizing and wire sizing at the
same time, while maintaining the clock tree zero skew. ClockTune
first calculates the feasible delay and power information for each node
in a bottom-up fashion. After the desired delay and power is chosen
from the feasible region, a buffering and wire sizing is determined
in a top-down fashion. Although we focus on achieving zero skew,
ClockTune can also be used to achieve useful skew to tackle timing
problems. Moreover, if the clock routing encounters design changes,
ClockTune is able to rebalance the clock tree by local adjustment.

The rest of this paper is organized as follows. In Section II, we for-
mulate the problems and introduce the models and notations we use
in this work. In Section III, the fundamentals of our algorithm are in-
troduced. Section IV provides the algorithm framework and gives the
details of our ClockTune algorithm. Section V details the complexity
analyses. Section VI presents our experimental results and Section VII
concludes this paper.

II. PRELIMINARIES

The minimum-delay/power zero skew wire sizing (min-ZSWS)
problem was solved in [14], and the proposed method provides a good
basis for understanding this work. However, [14] did not consider
buffer insertion/sizing, which is a more effective way of reducing
clock delay. We first define both problems and repeat part of the
conclusions of [14] to make this work self-contained.

Problem Definition 1: Min-ZSWS Problem: Given a clock tree T ,
find a set of wire widths with bounded delay and power consump-
tion such that the zero-skew constraint is satisfied and the delay and
switching power are minimized.

Problem Definition 2: Min-ZSBWS Problem: Given a clock tree
T , find a set of buffer locations, buffer widths, and wire widths with
bounded delay and power such that the zero-skew constraint is satis-
fied, and the delay and power are minimized.

We assume that the initial routing of the clock tree is given and there
exists some buffering and sizing combinations such that the clock tree
is zero skew. If our algorithm fails to find a zero skew solution, then it is
impossible to achieve zero skew by any designer with only buffer inser-
tion/sizing and wire sizing. In these cases, the initial routings should be
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TABLE I
NOTATIONS

regenerated. Although our algorithm does not require the initial routing
to be zero skew, it is easier to optimize an unbuffered zero skew routing.
In this work, we use the BB+DME [13] algorithm to generate initial
zero skew routings. It has been shown that useful skew can be used
to speed-up timing convergence and improve circuit performance. The
DME algorithm can also be used to construct useful skew clock trees by
taking into account the relative skews of the clock sinks, while gener-
ating merging segments. When a pair of clock sinks has a large relative
skew, we have to allow wire snaking in order to find a feasible merging
segment. A better solution is to group the clock sinks according to their
skews. The clock sinks requiring late clock arrival time are selected for
merging first. The sinks requiring early clock arrival time are merged
into the clock tree later (therefore, they are closer to the root node). In
this way, we can reduce or totally avoid wire snaking. In the rest of this
paper, we focus on optimizing the given initial routing.

A. Notations

Table I lists the notations used throughout this paper. In Table I, Tv is
a binary tree. However, any tree structure can be represented as a binary
tree, if the length of an edge is allowed to be zero. In this paper, buffers
are only allowed to be inserted right above a node, and to simplify the
discussion, no buffer is allowed to insert above a leaf node.

B. Delay and Power Models

There are two delay components in a clock tree: interconnect delay
and gate delay. In this paper, the resistance–capacitance (RC) models
for interconnects and buffers and the Elmore-delay model for delay
calculation are used. For a wire with length l and width w, the wire
resistance is lr0=w and the wire capacitance is lc0w. The wire capaci-
tance is further divided into two equal capacitors attached at both ends
of the wire. For a buffer with gate width wb, the gate capacitance at its
input is wbcb. The gate is modeled as a ramp voltage source with an
effective output resistance rb=wb. The ramp voltage source has a delay
tc, which models the intrinsic delay of the buffer.

The power consumed by the clock tree can be modeled as P =
fCV 2+Ps+Pl, where f is the switching frequency, V is the voltage
swing, and C is the total interconnect capacitance, gate capacitance
of the buffers, and sink loads. Ps accounts for the buffer short-circuit
power and Pl accounts for the leakage power. In a usual design, the last
two terms are usually much smaller and the total capacitance is a good
measure of the total power consumption [15].

Fig. 1. Illustration of the existence property.

III. DESIGN SPACE AND DC REGION

Considering the min-ZSWS problem, if Tv has n edges, then there
are n wire widths to be determined. Every embedding of Tv (a set of
wire widths which satisfies zero skew and wire-width constraints) is a
point in the n-dimensional design space. Since we are only interested
in the delay and power of the embeddings, we can project all the em-
beddings onto the D–C plane: the X–Y plane with delay value on Y
axis and capacitance load value on X axis. The projection of the em-
beddings form a DC region, 
v , on the D–C plane. The lower-left
edge of the DC region is the delay/power tradeoff curve, and previous
works [9]–[11] have emphasized finding the solutions which lie on this
curve while pruning out suboptimal solutions. These approaches have
two drawbacks. First, the combinations that lie on the curve grow poly-
nominally [11]. Second, early pruning suboptimal solutions may result
in suboptimal global solutions because a suboptimal solution of a sub-
tree can be part of an optimal global solution of the entire clock tree.
For example, a clock tree with a small left subtree and a large right sub-
tree would require the left subtree to be sized suboptimally in order to
match the delay of the right subtree.

In [14], a different approach is used to solve the min-ZSWS problem
which relies on the following property.

Property 1: Existence Property: For every point pv = (dv; cv) 2

v , there exists at least one pair of points pv = (dv ; cv ) 2 
v and
pv = (dv ; cv ) 2 
v , such that the corresponding embeddings of
Tv and Tv are the same as in the embedding of Tv from pv .

The existence property is the restatement that for a feasible design
of Tv , its designs of subtrees Tv and Tv are also feasible, thus, their
projections are in 
v and 
v . In Fig. 1, the light grey areas are the
DC regions of Tv , Tv , and Tv . For the projection of a feasible design
of Tv , pv , at least one pair of pv and pv in 
v and 
v satisfies the
following:

cv =
u

(cu + luw(eu)c0); u 2 fvl; vrg (1)

dv = du +
l2ur0c0
2

+
lur0cu
w(eu)

(2)

and all pairs of pv and pv form the dark grey areas.
It is worth mentioning that in the Elmore-delay model, a capacitor is

used to model an RC tree and the calculated delay onlymatches the first
moment of the exact impulse response. If a more accurate delay model
is required, an RCmodel or capacitor-RC (CRC) model can be adopted
to model an RC tree [16]. By adding another axis to the D–C plane
for the additional parameter, it forms a D–C space. The DC region
becomes the projection of the embeddings on the D–C space.

In the min-ZSBWS problem, buffering is allowed and cv is the total
capacitance of Tv minus the capacitance shielded by first-level buffers
below v. Inserting a buffer also changes the signal polarity, thus, 
v

is split into two sets. 
vp is the projection of embeddings with even
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Fig. 2. Illustration of ClockTune during (a) the bottom-up phase and (b) the top-down phase.

levels of buffers, 
vn is the projection of embeddings with odd levels
of buffers, and
v = 
vp[
vn. Property 1 still holds for the buffered
case and (1) and (2) can be rewritten as

csv =
u

csu; u 2 fvl; vrg (3)

cv =
u

cu + luw(eu)c0; bu = �

w(bu)cb + luw(eu)c0; bu 6= �
(4)

dv=
du+

l r c

2
+ l r c

w(e )
; bu=�

du +
r c

w(b )
+ tc +

l r c

2
+ l r w(b )c

w(e )
; bu 6=�.

(5)

By Property 1, at least one set of buffering decisions, buffer widths,
and wire widths satisfies (3)–(5) for a given set of pv , pv , and pv .
The feasible embeddings are actually implied in the DC regions, and
we can avoid handling the growing design combinations by storing the
DC regions instead. In the next section, we will show how to obtain the
DC regions and select pv , pv , and pv .

IV. CLOCKTUNE ALGORITHM

We propose a dynamic programming algorithm, ClockTune, to solve
the min-ZSWS and min-ZSBWS problems. ClockTune is composed of
two phases. In the first phase, a bottom-up approach is used to obtain
the DC regions of all nodes. In the second phase, a top-down approach
determines the buffer locations, buffer widths, and wire widths. Fig. 2
illustrates its procedures.

A. ZSWS Algorithm

In this section, we detail the bottom-up and top-down process of
ClockTune in solving the min-ZSWS problem.

1) Bottom-Up Phase: Conceptually, a zero skew clock tree is
formed by combining two branches with equal delay. A branch
consists of a wire segment and a leaf node or a subtree connected to
it. Thus, the left branch of node v is defined as T+

v = fev [ Tv g
and the right branch is defined as T+

v = fev [ Tv g. Let d+v be the
delay and c+v be the total downstream capacitance seen at v along ev ,
Tv = fT+

v [ T+
v j d+v = d+v g.

We first introduce the definition of the branch DC region and the as-
sociated operator to facilitate our discussion followed by introducing
the wire-sizing transformation of calculating the branch DC region.

Definition 1: Branch DC Region: The branch DC region of node
v, 
+

v = f(d+v ; c
+
v )g, is the projection of all embeddings of T+

v =
fev [ Tvg on the D–C plane.

Definition 2: Operator: The DC region of v is equivalent to the
combination of the branch DC regions of vl and vr through the equi-
delay operator, , denoted as 
v = 
+

v 
+
v . The operator performs

the following operation:

(dv; cv) 2 
v () 9 (d+v ; c
+
v ) 2


+
v and (d+v ; c

+
v ) 2 
+

v

s:t: dv = d
+
v = d

+
v ; cv = c

+
v + c

+
v :

Lemma 1: Wire-Sizing Transformation: Given wm � w(ev) �
wM , 
+

v can be obtained from 
v by v , denoted 
+
v = v(
v),

which does the following transformation:

d
+
v = dv +

lvr0

w(ev)

lvw(ev)c0
2

+ cv (6)

c
+
v = cv + lvw(ev)c0: (7)

Algorithm 1 of min-ZSWS
Input: a clock tree with given routing
rooted at node

Output: DC regions of all nodes in
if is a leaf node then

else { is an internal node}
call
call

end if

The ClockTune DC(Tv) subroutine of the ClockTune algorithm
can now be written as Algorithm 1. For a leaf node v, cv is the load ca-
pacitance and, hence, a constant. To enforce the zero-skew constraint,
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Fig. 3. Obtain the DC region of a level-2 node by sampling techniques.

we set dv to 0 for all leaf nodes, and 
v = f(dv; cv)g is a single point
on the D–C plane. Although our focus is on the min-ZSWS problem,
ClockTune can accept arbitrary skew values by simply assigning dif-
ferent dv for each leaf nodes. ClockTune can also be extended to ac-
cept bounded-skew constraints, where the
v of a leaf node becomes a
vertical segment, of which the Y coordinates of the end points are the
maximum and minimum acceptable clock arrival times.

For a level-1 node v, the closed-form solution of
v can be obtained
by solving (6) and (7) for vl, vr , and imposing the zero-skew constraint
d+v = d+v . The solution is as follows:

dv w(ev ) = dv +
l2v r0c0

2
+

lv r0cv

w(ev )
(8)

cv w(ev ) = cv + cv + lv w(ev )c0

+
l2v cv r0c0

(dv � dv )+ r c

2
(l2v � l2v )+

l r c

w(e )

: (9)

Equations (8) and (9) represent a strictly decreasing curve on theD–C
plane. The last term in (9) is the wire capacitance of ev in which
w(ev ) is further substituted by its relation with w(ev ). ClockTune
then only needs to store the feasible range of w(ev ) to represent this
curve [14]. However, the closed-form solution of
v for a level-2 node
v is difficult to obtain. Sampling techniques are applied to sample and
store 
+

v and 
+
v , which are then combined into 
v . We first take p

samples on the delay range d+v \ d+v , then take q samples for w(eu)
(assuming u is the level-1 child of v). For each sample of w(eu), (8)
and (9) give a single point, and a subset of 
+

u , that is also a strictly
decreasing curve, can be obtained. The intersection points of these q
curves and p delay samples can be calculated, and the ranges those
points span can be captured. By taking the same p delay samples on
the other child node, 
v = 
+

v 
+
v can be obtained. The procedure

is illustrated in Fig. 3. In a sampled DC region, each delay sample is
associated with one or more capacitance ranges. The branch DC region
of each horizontal segment in a sampled DC region can be solved by
(6) and (7) and, again, we perform sampling on the delay to obtain the
sampled DC region for level-3 and above nodes [14].

2) Top-Down Phase: The top-down phase is straightforward. We
first select a pair of target delay and capacitance load values (dt; ct)
from 
v , which can be the minimum-delay or minimum-power solu-
tion. The capacitance load ct is further divided into ctl and ctr, such
that ctl + ctr = ct, (dt; ctl) 2 
+

v , and (dt; ctr) 2 
+
v . If vl is a leaf

node, then w(ev ) is determined by (2). If vl is a level-1 node, the fea-
sible range of w(ev ) can be obtained by solving (6). If vl is a level-2

or above node, then the DC region of vl is in a sampled form. For each
sample in 
v , the range of w(ev ) can be obtained by solving (6) and
at least one range of w(ev ) is feasible by Property 1. Once w(ev ) is
chosen, the target delay and capacitance load of
v are determined and
we can proceed to determine the wire widths in Tv . The same approach
applies to vr . ClockTune Embed() is given in Algorithm 2.

Algorithm 2 of
min-ZSWS
Input: a clock tree with given routing
rooted at node

Output: an embedding of
if is the root node then
choose from

end if
split into and , such that

, , and
foreach child node
switch
case leaf node
solve by (2)
case level-1 node

solve the range of by (6) and
(7)
choose a and calculate
call

case level-2 or above node
solve the range of for every

sample in by (6) and (7)
choose a and calculate
call

end switch
end for

B. Min-ZSBWS Algorithm

Inverter insertion has proven to be more area efficient than buffer
insertion [17] and ClockTune is extended to handle inverter insertion
and its signal polarity issue. From this point on in this paper, the term
buffer refers to inverter. In the min-ZSBWS problem, 
v is split into

vp and 
vn. When applying v , the polarities of the DC regions re-
main unchanged. If a buffer is inserted, the total capacitance increases,
but the capacitance seen by upstream nodes is reduced. Thus, we need
to expand the D–C plane into the D–C space where dv is on the Y
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Fig. 4. Illustration of the procedure to generate the branch DC region above a
buffered node.

axis, csv is on the X axis, and cv is on the Z axis. We now define an-
other transformation for simultaneous buffer insertion/sizing and wire
sizing.

Lemma 2: Buffer-Insertion/Sizing and Wire-Sizing Transforma-
tion: Given wm � w(ev) � wM and wbm � w(bv) � wbM, 
+

vn

with buffer inserted above v can be obtained from 
vp by v , denoted

+
vn = v(
vp), which performs the following transformation:

d
+
vn = dvp +

rbcvp

w(bv)
+ tc +

l2vr0c0

2
+

lvr0cbw(bv)

w(ev)
(10)

c
+
vn = cbw(bv) + lvw(ev)c0 (11)

c
+
svn = csvp + cvp; p; n are interchangeable: (12)

To obtain the three-dimensional DC regions, sampling is first per-
formed on the delay and shielded capacitance values along Y and X
directions. To create the branch DC region above an unbuffered node,
we need to sample w(eu) to fix cvp values as before. To create the
branch DC region above a buffered node we take samples on w(bv).
However, the sampling originally required onw(eu) can be eliminated
because, for each sample of c+svn, the value of cvp = c+svn�csvp is fixed.
The procedures are illustrated in Fig. 4 and Algorithm 3. The top-down
algorithm follows the same procedures as in Algorithm 2 and presented
in Algorithm 4. The major differences are that both ct = clt + crt and
cst = cslt + csrt have to be satisfied when choosing pvl and pvr, and
(10)–(12) can also be used to determine w(ev) and w(bv).

Algorithm 3 of min-ZSBWS
Input: a clock tree with given routing
rooted at node

Output: DC regions of all nodes in
if is a leaf node then

,
else { is an internal node}
call
call

end if

Algorithm 4 of
min-ZSBWS
Input: a clock tree with given routing
rooted at node

Output: an embedding of
if is the root node then
choose from .
end if
split into and , into and

, such that , , and
,

foreach child node
switch
case leaf node
solve by (2)

case level-1 node
solve the range of by (6)
choose a and calculate
call

case level-2 or above node
solve the range of ( ) for
every sample in by (6)

solve the range of and for
every sample in by (10)
(12)

choose a pair of and and
calculate

call
end switch

end for

C. Slew-Rate Control

One of the purposes for buffer insertion is to adjust the clock slew
rate. If the loading capacitance of a buffer is too large, the output signal
will have a slow rise and fall time, and it in turn increases the short-
circuit power of downstream buffers. One way to control the slew rate
is to limit the loading capacitance to a certain value such that the slew
rate of the buffer is bounded to the desired value. This constraint can
be taken care of easily by limiting cv during the bottom-up phase. In
this manner, it is guaranteed that the embeddings we get during the
top-down phase will not have any buffer driving a load that exceeds the
predefined upper limit. During the bottom-up phase, the DC regions
might grow very large due to the embeddings with excessive buffers,
which have large delay and total capacitance values. Again, we can set
upper limits on dv and (csv + cv ). Since cv has been limited by the
maximum buffer loading value, which is usually small, imposing the
limit on csv is sufficient. These limits are equivalent to adding three
cutting planes in theD–C space and only consider the DC regions that
lie inside the cuboid on the first octant.

D. Incremental Refinement

When clock routing undergoes design changes and the clock tree is
no longer zero skew, ClockTune can be used to perform incremental
refinement in the way that follows. First, the DC regions are recon-
structed from affected nodes until it reaches node v such that Tv covers
all design changes. Assume the projection of the original embedding
of Tv is (d̂v; ĉv; ĉsv). If there exists a point in the new DC region
with dv = d̂v , cv = ĉv , and csv = ~csv , we take this point and run
ClockTune Embed(d̂v; ĉv ; ~csv) to determine a new buffering and
wire sizing of Tv . The rest of the clock tree is not aware of these design
changes because (d̂v; ĉv ) exposed to the rest of the clock tree remains
the same. Otherwise, we keep updating the DC regions toward the root
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TABLE II
DELAY AND POWER BEFORE AND AFTER WIRE-SIZING. THE GAINS ARE MEASURED BY THE INITIAL VALUES DIVIDED BY THE OPTIMIZED VALUES

TABLE III
DELAY AND POWER BEFORE AND AFTER BUFFER-INSERTION/SIZING AND WIRE-SIZING

node until a point of the new DC region satisfies dv = d̂v and cv = ĉv .
For example, if the number of leaf nodes or total sink capacitance of a
function block increases, we can insert more levels of buffers in Tv to
maintain its delay. Adding more buffers will increase the power con-
sumption of Tv . However, only the total downstream capacitance seen
at v needs to remain unchanged, and the amount of shielded capaci-
tance can be increased. If, on the contrary, the total sink capacitance of
Tv decreases, we can use wider wires or fewer levels of buffers so that
dv and cv remain unchanged. Since the locations of first-level buffers
and wire widths above these buffers can be adjusted, a wide range of
local changes can be accommodated through this tuning process.

To enable clock tuning during design cycles, the subtree that are
likely to undergo design changes may not be designed at optimal delay.
For example, if Tv is designed to have optimal delay and its total sink
capacitance decreases,ClockTune can be used to find a new embedding
with the same delay, where the original delay becomes suboptimal in
the new DC region. However, if the total sink capacitance increases, it
will not be possible to maintain the delay of Tv . Thus, designers have
to trade-off between design flexibility and clock delay.

V. COMPLEXITY

Assuming a clock tree Tv has n nodes, the number of delay samples
is p, and the number of wire-width samples is q. In the min-ZSWS
problem, it takes O(1) time to construct the DC regions for leaf and
level-1 nodes. Level-2 nodes requireO(pq) time due to delay and wire-
width sampling. The other nodes need O(p2) time to combine p range
for each of the p delay samples. Note that a level-2 node can have
more than one capacitance ranges with each delay. However, the gaps
between the ranges tend to be filled up quickly as we move upward
toward the root node. For example, multiple ranges can overlap and
become a single range when we create the branch DC regions or merge
the branch DC regions with the operator. In practice, the number
of ranges with each delay is always less than four and we exclude it
in the complexity analyses. Thus, the complexity for the bottom-up
phase isO(max(p; q)pn). In the top-down phase, each wire width can
be determined in O(p) time and the complexity is O(pn). The overall
runtime complexity is O(max(p; q)pn). Since we only need to store
the maximum and minimum values of the capacitance load of each
delay sample, the memory requirement is O(pn).

In the min-ZSBWS problem, the complexity to construct the DC re-
gions for leaf and level-1 nodes is O(1). Let p be the number of delay
samples, let q be the number of wire-width samples for wire-sizing

Fig. 5. DC regions of the root node of r5 in (top) min-ZSWS and
(bottom) min-ZSBWS problems. The circles indicate the minimum-delay and
minimum-power solutions.

transformation and the number of buffer-width samples for buffer in-
sertion/sizing and wire-sizing transformation, and let r be the number
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TABLE IV
COMPARISON BETWEEN DISCRETIZATION-INDUCED SKEW AND PROCESS-VARIATION-INDUCED SKEW

of shield-capacitance samples. The transformations perform q sam-
pling with each of the p � r line samples in the children DC regions
in order to define one of the p � r line samples in the current DC re-
gion. Thus, the straightforward implementation requires O(p2qr2n)
runtime. By exploring the properties of (10) and (11), the runtime can
be reduced to � O(pqr2n), and the memory requirement is O(prn).

VI. EXPERIMENTAL RESULTS

We implement our algorithm in C++ and run the program on a 1-GB
1.2-GHz Pentium IV PC. The benchmarks r1-r5 are taken from [18].
All simulations use r0 = 0:03, c0 = 2� 10�16=�m2, wm = 0:3 �m,
wM = 3 �m. The parameters of the buffers are cb = 40 fF, rb =
100
, tc = 30 ps, andwbm = 1,wbM = 10. The maximum load of a
buffer is 4 pF. The initial routings are generated by the BB+DME [13]
algorithm. The numbers of samples used in the min-ZSWS problem
are p = q = 256. The numbers of samples used in the min-ZSBWS
problem are p = q = r = 64.

Table II shows the minimum-delay and minimum-power solutions
for the min-ZSWS problem. If the initial routing does not use the
minimum wire width, then both the delay and power can be reduced
by performing wire sizing. Table III shows the minimum-delay and
minimum-power solutions for the min-ZSBWS problem. The delay
is dramatically lower than that of the initial routing even for the
minimum-power solution, and the minimum-delay solutions have
more than 2� speedup compared to the minimum-power solution.
However, the power saving from moving minimum-delay solutions
to minimum-power solutions is less than 5% for r5. Since the
process-variation-induced skew is roughly proportional to the clock
delay, it is not worthwhile to go for minimum-power solutions. As
shown in Table III, the power consumptions of initial solutions and
minimum-delay solutions are all roughly proportional to the sizes of
the clock trees. Therefore, buffer insertion/sizing and wire-sizing tech-
niques cannot alleviate the linear growth of the power consumption
for large clock trees. Thus, clock gating or other design techniques
need to be investigated for low-power applications. We also use
different initial wire widths to generate different initial routings and
the solutions found by ClockTune do not change much because most of
the delay reductions come from buffer insertion/sizing. Using smaller
initial widths results in higher initial delay and lower initial load, thus,
the delay gains become higher and load gains are lower than those
listed in Tables II and III (and vice versa). Note that the delays shown
in the figures and tables are the Elmore delays multiplied by ln2.
Fig. 5 shows the DC regions of the root node in r5 for the min-ZSWS
and min-ZSBWS problems.

In industrial applications,wire and bufferwidths usually take discrete
values. We can discretize the widths to make the embeddings generated
by ClockTune comply with layout restrictions. After discretization,
the embeddings are no longer zero skew. Fortunately, discretization
introduces random variations to the clock tree and their effects tend
to cancel each other out. Process variation is usually systematic and
affects buffer channel widths as well. Thus, discretization-induced

Fig. 6. Relative distances from minimum delays obtained by ClockTune
to optimal delays in (top) min-ZSWS and (bottom) min-ZSBWS problems.
Optimal delays are approximated by nonlinear curve fitting.

skew is much less significant than process-variation-induced skew and
we can obtain near-zero-skew embeddings from ClockTune. Table IV
shows the discretization-induced skews and process-variation-induced
skews of minimum-delay embeddings from Tables II and III. Upon
discretization, all wire and buffer widths are rounded to the nearest
multiples of unit widths �W . For process variation, we use a
simple linear model, such that the variations on all wire widths,
buffer widths, and buffer channel widths increase linearly across
the whole chip with maximum variation �Wmax. Results show that
discretization-induced skew is within tolerable range and ClockTune
is suitable for industrial applications.

Theoretically, ClockTune requires infinite samples in order for the
minimum-delay solutions to converge to optimal delay. Since the run-
time complexity of ClockTune is polynomial, the convergence rate af-
fects the scalability of ClockTune. Fig. 6 shows the relative distances
from minimum delays obtained by ClockTune to optimal delays in
which optimal delays are approximated by nonlinear curve fitting. The
results show that it takes reasonable samples in finding good solutions.
If we fix the number of samples, the runtime is linear with respect to
the size of the clock tree. Thus, ClockTune scales well for large clock
trees.
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VII. CONCLUSION

We present a simultaneous buffer insertion/sizing and wire sizing
zero skew clock-tree optimization algorithm, ClockTune. The al-
gorithm takes polynomial runtime and memory usage and finds
minimum-delay and minimum-power embeddings efficiently. For
wire widths from 0.3 to 3 �m and buffer widths from 1� to 10�, the
algorithm achieves 45� delay improvement and 1.25� power-saving
over r5’s initial routing with 1 �m wires generated by the BB+DME
algorithm. ClockTune can also be applied for clock tuning to speedup
design convergence.
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Constrained Floorplanning Using Network Flows

Yan Feng, Dinesh P. Mehta, and Hannah Yang

Abstract—This paper presents algorithms for a constrained version of
the “modern” floorplanning problem proposed by Kahng in “Classical
Floorplanning Harmful?” (Kahng, 2000). Specifically, the constrained
modern floorplanning problem (CMFP) is suitable when die-size is fixed,
modules are permitted to have rectilinear shapes and, in addition, the
approximate relative positions of the modules are known. This formulation
is particularly useful in two scenarios: 1) assisting an expert floorplan
architect in a semiautomated floorplan methodology and 2) in incremental
floorplanning. CMFP is shown to be negative–positive hard. An algorithm
based on a max-flow network formulation quickly identifies input con-
straints that are impossible to meet, thus permitting the floorplan architect
to modify these constraints. Three algorithms [Breadth First Search
(BFS), Improved BFS (IBFS), Compromise BFS (CBFS)] based on using
BFS numbers to assign costs in a min-cost max-flow network formulation
are presented. Experiments on standard benchmarks demonstrate that
IBFS is fast and effective in practice.

Index Terms—Algorithms, design automation, flow graphs.

I. INTRODUCTION

In classical floorplanning, the input consists of a set of (typically
rectangular) modules. A set of realizations providing height and width
information is associated with each module. In addition, a connectivity
matrix that contains the number of interconnections between pairs of
modules is provided. The objective is to minimize some combination
of the area, estimated wire length, and other criteria that have emerged
recently such as critical-path wire length, length of parallel-running
wires, clock skew, etc. Much research in floorplanning is concerned
with finding a good representation that can be used efficiently within
the context of simulated annealing [2]–[9].

Kahng [1] critiques the classical floorplanning problem and pro-
poses a modern formulation that is more consistent with the needs of
current design methodologies. Some of the attributes of the modern
formulation are: 1) the dimensions of the bounding rectangle must
be fixed because floorplanning is carried out after the die size and
the package have been chosen in most design methodologies; 2) the
modules’ shapes should not be restricted to rectangles, L-shapes, and
T-shapes; and 3) “round” blocks with an aspect ratio near 1 are desir-
able.

Several aspects of this problem had been previously addressed by
Mehta and Sherwani [10]. Their algorithm assumes a fixed outline and
obtains a provable zero whitespace solution by relaxing the require-
ment on module shapes. Further, it also tries to make blocks as “round”
as possible and to minimize the number of sides. Their methodology
differs from that proposed byKahng in that they assume that an approx-
imate location for each module was included in the input. This is a real-
istic formulation in several design scenarios where the designer already
has a fairly good idea as to the approximate locations of the modules.
This claim is supported by an excerpt reproduced from a discussion
among designers in an electrical design automation (EDA) newsgroup:
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