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The results in Table I show that high fault coverage and differen-
tiation coverage are achieved in all cases. By using the fault specific
extracluster configuration algorithm, 100% fault coverage can be guar-
anteed at the cost of an increased number of configurations.

VIII. C ONCLUSION

We have presented a hierarchical technique to define test con-
figurations for the detection and diagnosis of interconnect faults in
cluster-based FPGA architectures. We have used the concept of test
transparency to define configurations which enable test access to
the high-density logic cluster embedded within each FPGA tile. We
have demonstrated that this technique can be used to successfully
define a small set of test configurations which allow the detection and
diagnosis of nearly all targeted interconnect faults.
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Power Grid Transient Simulation in Linear
Time Based on Transmission-Line-Modeling
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Abstract—The soaring clocking frequency and integration density
demand robust and stable power delivery to support tens of millions of
transistors switching. To ensure the design quality of power delivery,
extensive transient power grid simulations need to be performed during
the design process. However, the traditional circuit simulation engines
are not scaled well for the complexity of power delivery. As a result, it
often takes a long runtime and huge memory requirement to simulate
a medium-sized power grid circuit. In this paper, the authors develop
and present a new efficient transient simulation algorithm for power
distribution. The proposed algorithm, transmission-line-modeling alter-
nating-direction-implicit (TLM-ADI), first models the power delivery
structure as transmission line mesh structure, then solves the transient
modified nodal analysis matrices by the alternating-direction-implicit
method. The proposed algorithm, with linear runtime and memory
requirement, is alsounconditionally stablewhich ensures that the time-step
is not limited by any stability requirement. Extensive experimental results
show that the proposed algorithm is not only orders of magnitude faster
than SPICE but also extremely memory saving and accurate.

Index Terms—Alternating direction implicit, power grid, transient,
transmission line modeling.

I. INTRODUCTION

The increase in the complexity of the very large scale integration
(VLSI) chips and the decrease in the feature size of the chips demand
larger grids for power distribution. This causes the designing and veri-
fying of the power networks to become a challenging task. The inferi-
orly designed power distribution network can degrade the circuit per-
formance, noise margin, and the reliability. Since the power grids are
rapidly becoming a limiting factor in high-performance microproces-
sors, the ability to analyze power grids efficiently is a critical require-
ment to obtain a robust design [1]–[4].

Power is transferred through many complicated circuit structures.
From the power supply through the PCB, packaging, I/O pins,
C4-bump, and on-chip interconnect to the transistors, every portion of
the circuit in the power delivery path plays a crucial role for the quality
of power delivery and hence all of them need to be carefully modeled
and designed. There are several sources that cause the degradation of
the quality of power delivery systems such asIR drop,Ldi=dt drop,
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and resonance issues. WhileIR drop can be simply verified by the
dc analysis, theLdi=dt drop issues need to be analyzed by transient
simulation due to the differentiation nature ofLdi=dt drop.

To ensure the design quality of power delivery, extensive transient
simulations are required during the design process. However, due to
the complexity of on-chip power grids, it is computationally expensive
to simulate all the transistors with power delivery structure. To effec-
tively enhance the simulation speed, it has been proposed to decouple
the power delivery structure simulation and transistors simulation [5].
That is, it first simulates transistors to get the drawn current waveforms
and then performs linear simulation with those currents attached as in-
dependent current sources. In this way, the simulation can be effec-
tively sped up since there are fewer elements in both circuits and the
linear circuit can be simulated efficiently with only one LU decomposi-
tion. However, due to the large size and grid nature of the linear circuit,
SPICE [6] does not perform well in this type of system and often takes
days to complete the full simulation as well as needing many giga bytes
of memory space. Hence, in order to facilitate the design of large scale
power grids, it is crucial to develop an efficient transient simulation en-
gine which is capable of performing the full-chip power grid analysis
in a reasonable turnaround time.

Several techniques [7], [8] have been developed to speed up the anal-
ysis. Reference [7] presented the transmission matrix method to reduce
the memory usage and CPU time for analysis. The method is based
on a multi-input/multi-output transfer function which enables the en-
tire power distribution network to be computed as the product of sev-
eral small individual sparse square matrices. The transmission matrix
method is 7–13 times faster than SPICE and saves memory require-
ments. Recently, [8] proposed the preconditioned conjugate gradient
(PCG) simulator to speed up the dc and transient simulation of the
power delivery circuits. The PCG simulator is based on the precondi-
tioned Krylov-subspace iterative method which has been shown to be
significantly faster than traditional iterative methods without precondi-
tioning. The PCG simulator is about 100 times faster than the SPICE
and requires less than 70% memory space.

In this paper, we propose to use the transmission line modeling
(TLM) [9] method to perform the time-domain simulation since TLM
can capture both theIR andLdi=dt drop. TLM is closely related
to the finite-difference time-domain (FDTD) method, which is one
of the most popular and powerful computational electromagnetic
techniques in the microwave simulation field [10]–[12], and performs
electromagnetic analysis in the time domain instead of frequency
domain. The TLM method differs from FDTD in the sense that it
utilizes transmission line cells to model the structure and directly
solves the voltage and current quantities while FDTD uses the Yee
cell structure to obtain electric and magnetic fields. Since voltage and
current are the major focus for the VLSI power delivery analysis,
the TLM method can be applied directly to perform power delivery
transient simulation. The TLM method has been successively applied
to analyze the LC networks by Gwarek [13]. Unfortunately, the size
of time step is restricted by the minimum grid cell size (Courant
stability condition as the standard FDTD method [12]). For example,
for the VLSI technology with feature size as 0.1�m and the dielectric
permittivity as 4, the Courant limit is close to 0.47 fs. Thus it needs
around 2.1� 106 time steps to simulate a 1-ns period. Therefore, it is
crucial to develop an unconditionally stable TLM method for efficient
analysis.

To effectively reduce the stability limit requirement, several uncon-
ditional FDTD methods have been proposed and tested by [14]–[16]
and showed good potential in the application of on-chip microwave
analysis [14]. However, there is still no unconditionally stable TLM
method in the literature to the authors’ best knowledge. In this paper,
we develop an unconditionally stable TLM algorithm, TLM-ADI,

which relaxes the time-step constraint enforced by the Courant
stability limit for the traditional TLM method. This new time-stepping
scheme is based on an innovative alternating-direction-implicit (ADI)
method [17]. With this new method, the upper bound of the time
step is only limited by the accuracy requirement rather than stability
requirement. Thus, it greatly enhances the computational efficiency
due to the reduction of number of time steps. Furthermore, the runtime
and memory is linear withO(N) (N , the total number of nodes)
since at each time step it only solves around

p
N tridiagonal matrix

equations with dimension
p
N �

p
N . Extensive experimental results

also show that our algorithm is not only orders of magnitude faster
than SPICE but also extremely memory saving and accurate.

The rest of the paper is organized as follows. First, the review of
the finite-difference method will be studied in Section II. Then, the
numerical formulation of the proposed method will be derived, and its
two main features, unconditional stability and linear run time, will be
dressed in Section III. Finally, several numerical experiments, and the
conclusion of this paper will be given in Sections IV and V.

II. POWER GRID MODELING AND SIMULATION WITH

THE FINITE DIFFERENCEMETHOD

The transmission line grids are used to model the power delivery
structure as illustrated in Fig. 1. A serially connected resistor and in-
ductor with a ground capacitor are used to represent each wire segment.
The parametersr, l, andc are resistance, inductance, and capacitance
per unit length, respectively. The4x, and4z are the internodal dis-
tance along thex andz direction, and4l = (4x + 4z)=2. Once
the model has been set up, the system matrices are created by the tran-
sient nodal analysis. In each cell, by applying KCL at center node, and
KVL around the loops of that node in both thex–y andy–z planes as
shown in Fig. 2, the KCL and KVL equations for a nodeoij at position
(xi; zj) can be written as (the independent current sources are ignored
for simplicity)

~Cij

@

@t
xij = � ~Gijxij (1)

wherexij is the vector of nodal voltages of nodeoij and its four neigh-
borhood points and branch currents through the four inductors. After
assembling the KCL and KVL equations of all cells, the full system
equations can be summarized as

~C
@

@t
x + ~Gx = ~Ss(t) (2)

wherex is the vector of nodal voltages and currents through the induc-
tors and~Ss(t) is the vector of voltage sources. The system equations
are equivalent to the modified nodal analysis (MNA) equations.

Connection Between MNA and Transmission-Line Equation

Equation (2) can also be expressed in the transmission-line equation
(TLE) formation and hence can be solved by related techniques such
as TLM and FDTD methods [10].

For instance, after taking the limit of both sides of (1) with4x! 0,
4z ! 0, and4l! 0 (here, a uniform internodal distance is assumed,
i.e.,4x = 4z = 4l), the general TLEs are

@v

@t
=

1

2c
�@ix

@x
� @iz

@z
(3)

@ix
@t

=
1

l
�@v

@x
� rix (4)

@iz
@t

=
1

l
�@v

@z
� riz : (5)
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Fig. 1. The transmission line modeling of a power grid structure.

The basic concepts of finite difference schemes for solving the two-di-
mensional TLE are quite simple. First, the domain (x–z–t planes) of the
solution is subdivided by a net with a finite number of mesh points, as il-
lustrated in Fig. 3. Each mesh point(xi; zj ; tn) = (i4x; j4z; n4t)
is represented as “jni; j .” Then, the derivative at each mesh point is re-
placed by the finite difference. The finite difference can be done in
many ways such as forward-difference, backward-difference, or cen-
tered-difference. For example, by using the centered-difference, the

@v(xi; zj ; t)=@tn+1=2 and@ix(x; zj ; tn+1=2)=@xi can be approxi-
mated as

@v(xi; zj ; t)

@tn+1=2
�
�vjni; j + vjn+1i; j

4t
(6)

@ix(x; zj ; tn+1=2)

@xi
�
�ixj

n+1=2
i�1=2; j + ixj

n+1=2
i+1=2; j

4x
: (7)
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Fig. 2. KCL and KVL for a cell.

In addition, the@ix=@t, @iz=@t, @iz=@z, @v=@x, and@v=@z can be
represented by the similar way.

Similarly, ix andiz can be approximated by the centered-time av-
erage as

ix(xi+1=2; zj ; tn) �
ixj

n�1=2
i+1=2; j + ixj

n+1=2
i+1=2; j

2
(8)

iz(xi; zj+1=2; tn) �
izj

n�1=2
i; j+1=2 + izj

n+1=2
i; j+1=2

2
: (9)

Plugging the above approximated equations into (3)–(5) (for simplicity,
we setr = 0 which is the LC circuit) we get the updating equations
[13] as follows:

ixj
n+1=2
i+1=2; j

izj
n+1=2
i; j+1=2

=
ixj

n�1=2
i+1=2; j

iz j
n�1=2
i; j+1=2

(10)

�

�
4t

l4x

4t

l4x
0

�
4t

l4z
0

4t

l4z

vjni; j

vjni+1; j

vjni; j+1

(11)

vjn+1i; j = vjni; j (12)

�
4t

2c4x

4t

2c4z

ixj
n+1=2
i+1=2; j � ixj

n+1=2
i�1=2; j

izj
n+1=2
i; j+1=2 � iz j

n+1=2
i; j�1=2

: (13)
Fig. 3. Discretization of FDTD.
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The above updating equations are a simple explicit finite-difference
scheme. They can be easily done since only one unknown variable ap-
pears in each difference equation. It suffers on the Courant stability
constraint [12] which is

4t � 1

1p
lc

1
(4x)

+ 1
(4z)

: (14)

For example, for the VLSI technology with feature size as 0.1�m, and
1=
p
lc as a half of the light speed, the Courant limit is close to 0.47 fs.

Thus it needs around 2.1� 106 time steps to simulate a 1-ns period.

III. T RANSMISSION-LINE-MODELING ALTERNATING-
DIRECTION-IMPLICIT METHOD

In this section, we first derive and present the TLM-ADI algorithm
for the homogeneous case (r, l, c,4x, and4z are constants). Then, its
stability is studied analytically. At the end, we generalize the TLM-ADI
method to the inhomogeneous case (r, l, c,4x, and4z have different
values at different segments) and show that the run time of the proposed
algorithm is linear withO(N) whereN is the total number of nodes.

A. Homogeneous Case

The ADI method is a well-known method for solving the partial dif-
ferential equations (PDE). The main feature of ADI is to sweep direc-
tions alternately. Here, we derive and present our unconditionally stable
algorithm based on the ADI scheme. In contrast to the standard finite
difference formulation with only one iteration to advance from thenth
to (n+1)th time step, the formulation requires one subiteration to ad-
vance formnth to (n+ 1=2)th time step, and a second subiteration to
advance from(n + 1=2)th to (n + 1)th time step. For example, con-
sidering the KCL equation (3), every term in the first subiteration is
effectively discretized atn + 1=4 as

@v

@t

n+1=4

=
1

2c
� 4ix

4l

n

� 4iz
4l

n+1=2

(15)

where4ix = ix(x + 4x=2; z) � ix(x � 4x=2; z), and4iz =
iz(x; z +4z=2)� iz(x; z �4z=2). Note that the current terms are
discretized at time stepsn andn + 1=2, giving an over all effect of
n + 1=4. Thus, the4ix=4l is evaluated explicitly from known data
at time stepn, while the4iz=4l is evaluated implicitly from as-yet
known data at time stepn+1=2. In the second subiteration, every term
is effectively discretized atn + 3=4 as

@v

@t

n+3=4

=
1

2c
� 4ix

4l

n+1

� 4iz
4l

n+1=2

: (16)

Here, the current terms are discretized at time stepsn+1 andn+1=2,
giving an overall effect ofn + 3=4. Thus, the4iz=4l is evaluated
explicitly from known data at time stepn+1=2, while the4ix=4l is
evaluated implicitly from as-yet known data at time stepn + 1.

This ADI scheme can also be applied to the KVL equations (4) and
(5). The updating equations are listed below. Here, we have used the
conventional semi-implicit formulation to evaluate the voltage and cur-
rent terms at the appropriate time steps.

Subiteration 1: Advanceix, iz , andv from time stepn to time step
n + 1=2

ixjn+(1=2)i+(1=2); j =
4l� r4t

4l+ r4t
ixjni+(1=2); j � 24t

4x(4l+ r4t)

� vjni+1; j � vjni; j (17)

Fig. 4. Inhomogeneous case.

[��z 1 + 2�z ��z ]

vjn+(1=2)i; j�1

vjn+(1=2)i; j

vjn+(1=2)i; j+1

= vjni; j � 4t

4c4l
[�1 1 ]

ixjni�(1=2); j
�ixjni+(1=2); j

� 4t(4l� r4t)

4c4l(4l+ r4t)
[�1 1 ]

izjni; j�(1=2)
�iz jni; j+(1=2)

(18)

izjn+(1=2)i; j+(1=2) =
4l� r4t

4l+ r4t
iz jni; j+(1=2) � 24t

4z(4l+ r4t)

� vjn+(1=2)i; j+1 � vjn+(1=2)i; j (19)

where

�z =
(4t)2

2c4l4z(4l+ r4t)
:

Equation (17) provides an explicit updating expression forix since it
only depends on known values. Equation (18) provides an implicit up-
dating expression for the voltage componentv. It can be efficiently
solved by LU decomposition in linear time since the matrix associated
with this equation is tridiagonal. After solving eachv, the iz can be
updated by plugging the values ofv into (19).

Subiteration 2: Advanceix, iz , andv from time stepn + 1=2 to
time stepn + 1

izjn+1i; j+(1=2)

=
4l� r4t

4l+ r4t
izjn+(1=2)i; j+(1=2) �

24t

4z(4l+ r4t)

� vjn+(1=2)i; j+1 � vjn+(1=2)i; j (20)
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Fig. 5. Mesh points.

[��x 1 + 2�x ��x ]

vjn+1
i�1; j

vjn+1i; j

vjn+1i+1; j

= vj
n+(1=2)
i; j �

4t(4l� r4t)

4c4l(4l+ r4t)
[�1 1 ]

ixj
n+(1=2)
i�(1=2); j

�ixj
n+(1=2)
i+(1=2); j

�
4t

4c4l
[�1 1 ]

iz j
n+(1=2)
i; j�(1=2)

�izj
n+(1=2)
i; j+(1=2)

(21)

ixj
n+1
i+(1=2); j

=
4l� r4t

4l+ r4t
ixj

n+(1=2)
i+(1=2); j �

24t

4x(4l+ r4t)

� vjn+1i+1; j � vjn+1i; j (22)

where

�x =
(4t)2

2c4l4x(4l+ r4t)
:

Equation (20) provides an explicit updating expression foriz because
it only depends on known values. Equation (21) provides an implicit
updating expression for the voltage componentv. It can be efficiently
solved by LU decomposition in linear time since the matrix associated
with this equation is tridiagonal. Finally, theix can be updated by sub-
stituting the values ofv into (22).

B. Stability Analysis

The general way of verifying the stability of a finite-difference algo-
rithm is to put a sinusoidal traveling wave into the algorithm and make
sure that the propagation gain of this traveling wave is no more than

TABLE I
TLM-ADI A LGORITHM

one for all frequencies. By applying the Von Neumann analysis [11] in
the LC circuit (r = 0), we can analytically prove that the TLM-ADI
method is unconditionally stable.

For each time stepn, the instantaneous values of theinx , inz , and
v
n
y in space across the grids are Fourier-transformed into the spatial

spectral domain with respect to thex andz coordinates to provide a
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Fig. 6. Compare the (a) run time and (b) memory usages between TLM-ADI, PCG, and SPICE.

Fig. 7. Linear run time for TLM-ADI.

spectrum of spatial sinusoidal modes. By assuming the wavenumbers
kx andkz along thex andz direction, respectively, these components
can be represented as

i
n
x = Ix e

�j(k x+k z)
e
jwn (23)

i
n
z = Iz e

�j(k x+k z)
e
jwn (24)

v
n
=V0e

�j(k x+k z)
e
jwn

: (25)

The composite vector in the spatial spectral domain at time-stepn is
denoted as

F
n
=

i
n
x

i
n
z

v
n

: (26)

It can be shown that the Subiteration 1 [sees (17)–(19) withr = 0] can
be written in the spatial spectral domain in matrix form as

F
n+1=2

=M1F
n (27)
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Fig. 8. DC transient response of TLM-ADI with different time steps.

where

M1 =

1 0 jWx

�

~WxWz

Qz

1

Qz
j
Wz

Qz

j
~Wx

Qz
j

~Wz

Qz

1

Qz

(28)

and

Wx =
4t

l4x
sin

kx4x

2
; ~Wx =

4t

2c4l
sin

kx4x

2

Wz =
4t

l4z
sin

kz4z

2
; ~Wz =

4t

2c4l
sin

kz4z

2

Qx =1 +Wx
~Wx; Qz = 1 +Wz

~Wz :

Similarly, it can be shown that Subiteration 2 [see (20)–(22) withr =

0] can be written in the spatial spectral domain in matrix form as

F
n+1

=M2F
n+1=2 (29)

where

M2 =

1

Qx
�
Wx

~Wz

Qx
j
Wx

Qx

0 1 jWz

j
~Wx

Qx
j

~Wz

Qx

1

Qx

: (30)

Substituting (27) into (29), we get

F
n+1

=M2M1F
n
: (31)

With the help of package MAPLE™, we can find the three eigenvalues
of the composite matrixM =M2M1 as follows:

� = 1; 1�Wx
~Wx �Wx

~WxWz
~Wz �Wz

~Wz

�2 �Wx
~Wx �Wz

~Wz �Wx
~WxWz

~Wz

1 +Wx
~Wx +Wz

~Wz +Wx
~WxWz

~Wz :

By the detail analysis of the above eigenvalues, we are able to prove
that the proposed algorithm is unconditionally stable in the following
theorem.

Theorem 1: The TLM-ADI algorithm is unconditionally stable.
Proof: The Von Neumann analysis [11] says that the iterative

scheme is unconditionally stable if all the eigenvalues of the iterative
matrix are less than or equal to one. Hence, we only need to prove
all the eigenvalues are ones. The first eigenvalue is unity. For the rest
two eigenvalues, we can easily see the arguments of the square roots
in the numerators are all negative numbers. Hence, the square roots
are imaginary numbers. By taking the magnitudes of the numerators,
we find symbolically that they are exactly the same as denominators.
So, the magnitudes of the eigenvalues are unity, regardless of the4t.
Therefore, we conclude that our TLM-ADI algorithm is uncondition-
ally stable, and the Courant stability condition is removed.

C. Inhomogeneous Case and Linear Run Time

Generally, the parametersr, l, c, 4x, and4z may have different
values at different segments of the circuit. Hence, we extend the
TLM-ADI method to handle more general situations, as illustrated in
Fig. 4. TheRx; i�1=2; j andLx; i�1=2; j are the equivalent resistances
and inductances inx direction for a cell,Rz; i; j�1=2 andLz; i; j�1=2
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Fig. 9. A snapshot of the transient response with 1-ps time step.

are the equivalent resistances and inductances inz direction for a cell,
andCi; j is the equivalent capacitance for a cell.

By applying the similar derivation of (17)–(22), we get the updating
equations as follows.

For Subiteration 1, we divide the set of theseN (N = Nx �
Nz) nodes byNx subsets with each one containingNz points at the
z direction, as illustrated in Fig. 5

ixj
n+(1=2)
i+(1=2); � =Dxiixj

n
i+(1=2); � �Dvxi vj

n
i+1; � � vj

n
i; �

8 i = 1; . . . ; Nx � 1 (32)

�ivj
n+(1=2)
i; � =vjni; � �Dxvi ixj

n
i+(1=2); � � ixj

n
i�(1=2); �

� Zzviiz j
n
i; � 8 i = 1; . . . ; Nx (33)

izj
n+(1=2)
i; � = ~Dziizj

n
i; � �Yvzivj

n+(1=2)
i; �

8 i = 1; . . . ; Nx (34)

whereDxi, Dvxi andDxvi areNz � Nz diagonal matrices,~Dzi is
a (Nz � 1) � (Nz � 1) diagonal matrix,Zzvi is aNz � Nz lower
1-bandedmatrix (only diagonal and the first lower subdiagonal terms
are nonzeros),Yvzi is a(Nz � 1)� (Nz � 1) upper 1-bandedmatrix
(only diagonal and the first upper subdiagonal terms are nonzeros),�i

is a Nz � Nz tridiagonal matrix,ixjni+1=2; � andvjni; � areNz � 1
vectors (n = 1=2; 1; 1+1=2; . . .), andiz jni; � is a(Nz�1)�1 vector
(n = 1=2; 1; 1 + 1=2; . . .).

The computational load forixj
n+1=2
i+1=2; � is O(Nz) since it only de-

pends on the known values. From (35), the coefficient matrix�i asso-

ciated with updatingvjn+1=2i; � is a tridiagonal matrix like (35). There-

fore, the run time for updatingvjn+1=2i; � is alsoO(Nz)

�i =

� � 0 � � � 0

� � �
. . .

...

0 �
. . .

. . . 0
...

. . .
. . . � �

0 � � � 0 � �

: (35)

The work load foriz j
n+1=2
i; � isO(Nz � 1) because it depends only on

the known values aftervjn+1=2i; � is updated. Therefore, the run time is
O(Nz) for eachi.

Hence, the computational load for Subiteration 1 isO(N).
ForSubiteration 2, we divide the set of theseN nodes byNz subsets

with each one containingNx points at thex direction, as illustrated in
Fig. 5

iz j
n+1
�; j+(1=2) =Dzj iz j

n+(1=2)
�; j+(1=2)�Dvzj vj

n+(1=2)
�; j+1 �vj

n+(1=2)
�; j

8 j = 1; . . . ; Nz � 1 (36)

	jvj
n+1
�; j =vj

n+(1=2)
�; j �Dzvj iz j

n+(1=2)
�; j+(1=2) � iz j

n+(1=2)
�; j�(1=2)

�Zxvj ixj
n+(1=2)
�; j 8 j = 1; . . . ; Nz (37)

ixj
n+1
�; j = ~Dxj ixj

n+(1=2)
�; j � Yvxjvj

n+1
�; j

8 j = 1; . . . ; Nz (38)

whereDzj , Dvzj , andDzvj areNx � Nx diagonal matrices,~Dxj is
a (Nx � 1) � (Nx � 1) diagonal matrix,Zxvj is aNx � Nx lower
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1-bandedmatrix (only diagonal and the first lower subdiagonal terms
are nonzeros),Yvxj is a(Nx � 1)� (Nx � 1) upper 1-bandedmatrix
(only diagonal and the first upper subdiagonal terms are nonzeros),�i

is aNx �Nx tridiagonal matrix,ixjn�; j andvjn
�; j areNx � 1 column

vectors (n = 1=2; 1; 1+ 1=2; . . .), andiz jn�; j+1=2 is a(Nx � 1)� 1
vector (n = 1=2; 1; 1 + 1=2; . . .).

By the similar way, the computational load for Subiteration 2 is also
O(N).

Now, we can easily prove that the TLM-ADI algorithm has a linear
run time at each time step.

Theorem 2: The run time of TLM-ADI algorithm isO(N) at each
time step, whereN is the total number of nodes.

Proof: Two subiterations, 1 and 2, need to be performed for each
time step. From the above discussion, we know their run times are both
O(N). Therefore, the total run time isO(N).

At the end of this section we summarize our TLM-ADI algorithm in
Table I.

IV. EXPERIMENTAL RESULTS

In this section, we present several numerical experiments. We imple-
ment the TLM-ADI method in C language, and perform on an Alpha
workstation with Dual SLOTB 667 MHz Alpha 21 264 processors. For
simplicity, the experiments are performed on the homogeneous case.
We chooser = 0:03 
=�m, l = 1:26 pH/�m, c = 0:024 fF/�m, and
4x = 4z = 500 �m as the common parameters. Numerical results
are carried out by using the TLM-ADI algorithm, the PCG algorithm
[8], and the general circuit simulator SPICE. The software of PCG sim-
ulator which used the minimum degree recording is obtained from the
authors of [8].

The run time and memory usages are shown in Fig. 6 with 1-ps time
step and total 500 time steps. Fig. 6(a) and (b) show that the TLM-ADI
method is not only about ten times faster than the PCG method, and
over 1000 times faster than SPICE, but also extremely memory saving.
In Figs. 6(b) and 7, we show that the memory requirement and run time
for TLM-ADI are both linear with the total number of nodes. In Fig. 8,
we examine the accuracy and unconditional stability of the TLM-ADI
algorithm by simulating the dc transient response of a RLC circuit with
100 nodes, and 1-V dc voltage source excitation. The voltage waveform
of TLM-ADI with 1-ps time step and the result from SPICE’s at one
node are overlapped as shown in Fig. 8. Fig. 8 also demonstrates the
unconditional stability of TLM-ADI method. In this case, the Courant
stability constraint is 1.9442 ps, while the time step of TLM-ADI is not
limited by this stability constraint.

Finally, we use the TLM-ADI algorithm to simulate a 2601-node
power grid in 1-ns clock period with time step as 1 ps. Fig. 9 shows
the voltage distribution snapshot. Each node is attached a time-varying
current source to model the drawn current.

V. CONCLUSION

An efficient TLM-ADI algorithm for transient power grid simulation
is developed. Its unconditional stability and linear run time have been
demonstrated. The numerical simulation also shows that the TLM-ADI
algorithm not only speeds up orders of magnitude over the SPICE but
also cuts down the memory requirement and the results agree very well
with SPICE’s.
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Transition Time Modeling in Deep Submicron CMOS

P. Maurine, M. Rezzoug, N. Azemard, and D. Auvergne

Abstract—As generally recognized, the performance of a CMOS gate,
such as propagation delay time or short circuit power dissipation, is
strongly affected by the nonzero input signal transition time. This paper
presents an analytical model of the transition time of CMOS structures.
The authors first develop the model for inverters, considering Fast and
Slow input signal conditions, over a large design range of input–output
coupling capacitance and capacitive load. They then extend this model to
more complex gates. The validity of the presented model is demonstrated
through a comparison with HSPICE simulations on a 0.18 m CMOS
process.

Index Terms—Deep submicron, modeling, timing analysis.
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