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Fast and Exact Simultaneous Gate and Wire Sizing
by Lagrangian Relaxation

Chung-Ping Chen, Chris C. N. Chu, and D. F. Wong,Member, IEEE

Abstract—This paper considers simultaneous gate and wire
sizing for general very large scale integrated (VLSI) circuits
under the Elmore delay model. We present a fast and exact
algorithm which can minimize total area subject to maximum
delay bound. The algorithm can be easily modified to give
exact algorithms for optimizing several other objectives (e.g.,
minimizing maximum delay or minimizing total area subject to
arrival time specifications at all inputs and outputs). No previous
algorithm for simultaneous gate and wire sizing can guarantee
exact solutions for general circuits. Our algorithm is an iterative
one with a guarantee on convergence to global optimal solutions.
It is based on Lagrangian relaxation and “one-gate/wire-at-a-
time” greedy optimizations, and is extremely economical and fast.
For example, we can optimize a circuit with 27 648 gates and
wires in 11.53 min using under 23 Mbytes memory on a PC with
a 333-MHz Pentium II processor.

Index Terms—Gate sizing, interconnect, Lagrangian relaxation,
performance optimization, wire sizing.

I. INTRODUCTION

SINCE the invention of integrated circuits almost 40 years
ago, gate sizing has always been an effective technique

to achieve desirable circuit performance. As technology con-
tinues to scale down, total number of gates and interconnects
within a die grows over millions. In such increasingly dense
integrated circuits, a significant portion of the total circuit
delay comes from the interconnects. Therefore, developing
efficient algorithms which can handle large scale gate and
interconnect optimization problems are of great importance.

In the past, gate delay was the dominant factor in determin-
ing circuit performance. Thus, gate and transistor sizing have
been extensively studied in the literature [6], [12], [16], [17],
[23]. As interconnect delay plays an increasingly important
role in determining circuit performance, wire sizing has been
an active research topic in the past few years [2], [4], [7], [9],
[19], [22].

Since gate sizes affect wire-sizing solutions and wire sizes
affect gate-sizing solutions, it is beneficial to simultaneously
size both gates and wires. Several results on simultaneous gate
and wire sizing have been reported [2], [7], [8], [18], [20].
Chenet al. [2], Cong and Koh [8], Menezeset al. [18], and
Menezeset al. [20] considered a single routing tree together
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with the driving gate. For simultaneous gate and wire sizing for
general circuits, Cong and He [7] minimized a weighted delay
using a greedy sizing technique in conjunction with dynamic
programming. The algorithm cannot guarantee to give exact
solutions for objectives such as minimizing total area subject
to maximum delay bound or minimizing maximum delay.

In this paper, we consider simultaneous gate and wire sizing
for general very large scale integrated (VLSI) circuits under
the Elmore delay model. We present a fast and exact algorithm
which can minimize total area subject to maximum delay
bound. It can be easily modified to give algorithms for optimiz-
ing several other objectives (e.g., minimizing maximum delay
or minimizing total area subject to arrival time specifications
at all inputs and outputs). Convergence to global optimal
solutions is guaranteed for all cases. Our algorithm is based
on the Lagrangian relaxation technique, which transforms the
problem into a sequence of subproblems called the Lagrangian
relaxation subproblems. We show that each subproblem can
be greatly simplified by the Kuhn–Tucker conditions and can
be solved by an efficient “one-gate/wire-at-a-time” greedy
algorithm. So our algorithm is extremely economical and fast.
For example, we can optimize a circuit with 27 648 gates and
wires in 11.53 min using under 23 Mbytes memory on a PC
with a 333-MHz Pentium II processor.

We notice that the gate and wire sizing problem is similar
to the transistor sizing problem. In this paper, our problem
is formulated as a geometric program [10]. Fishburn and
Dunlop [12] have shown a long time ago that the transistor
sizing problem can also be formulated as a similar geo-
metric program. However, it would be very slow to solve
the geometric program by some general-purpose geometric
programming solver. So instead of solving it exactly, Fishburn
and Dunlop proposed TILOS [12], which is based on an
efficient sensitivity-based heuristic.

Marple [16], [17] solved the geometric program by the
Lagrangian augmentation technique. Lagrangian augmenta-
tion, like Lagrangian relaxation, is a general technique for
constrained nonlinear optimization. The difference between
them is that Lagrangian augmentation adds to the Lagrangian
a penalty term that helps to steer the solution toward the
feasible region. However, we demonstrate in this paper that
for the device sizing problems, Lagrangian relaxation is a
much better technique. Without the penalty term, tremendous
simplification and efficient greedy algorithm to the Lagrangian
relaxation subproblems are possible. Hence, our approach is
much faster. At the same time, rapid convergence to global
optimal solutions is still guaranteed.
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Sapatnekaret al. [23] later transformed the geometric pro-
gram into a convex program and solved it by a sophisticated
general-purpose convex programming solver based on interior
point method. This is the best-known previous algorithm that
can guarantee exact transistor sizing solutions. Again, as we
explore the special structure of the geometric program, our
tailored algorithm is much faster than the algorithm in [23].
For example, the largest test circuit in [23] has 832 transistors
and the reported runtime and memory are 9 hours (on a Sun
SPARCstation 1) and 11 Mbytes, respectively. Note that for a
problem of similar size (864), our approach only needs 1.3 s of
runtime (on a PC with a 333-MHz Pentium II processor) and
1.15 Mbytes of memory. According to the SPEC benchmark
results,1 our machine is roughly 40 times faster than the
slowest model of Sun SPARCstation 1. Taking the speed
difference of the machines into account, our algorithm is about
600 times faster than the general-purpose solver for a small
circuit. For larger circuits, we expect the speedup to be even
more significant.

The rest of this paper is organized as follows. In Section II,
we introduce some notations and terminology that we use in
this paper. In Section III, we present our algorithm for the
problem of minimizing total area subject to maximum delay
bound. In Section IV, we show how to modify our algorithm to
minimize maximum delay, to handle arrival time specifications
at all inputs and outputs, to consider power dissipation and to
use a more accurate gate model. In Section V, experimental
results to show the runtime and storage requirements of our
algorithm are presented.

II. PRELIMINARIES

In this section, we define some notations and terminology
that we use in this paper.

For a general VLSI circuit, we can ignore all latches and
optimize its combinational subcircuits. Therefore, we focus
on combinational circuits below.

Given a combinational circuit with input drivers, output
loads, and gates or wire segments, the gate sizes or the
segment widths are allowed to be varied in order to optimize
some objective. For , let be the driver resistance
of the th input driver. For , let be the load
capacitance of theth output load. See Fig. 1 for an illustration
of a circuit.

A gate, a wire segment, or an input driver is called a
component. In order to unify the notations that we introduce
later, imagine that two factitious components are added to the
circuit. The first one is called an output component which
consists of all the output loads. The second one is called an
input component which connects to all theinput drivers. Let
a nodebe a connection point between two components or the
output point of the output component. Note that the output of
each component should connect to a distinct node. So it is easy
to see that there are components and nodes.

Let . We label the nodes by indexes
as follows. The node with index 0 is the output point of the
output component. For , the node with index is

1SPEC table; ftp://ftp.cdf.toronto.edu/pub/spectable.

Fig. 1. An illustration of a circuit.

Fig. 2. An illustration of the circuit in Fig. 1 with node indexes and
component indexes. The factitious input component and output component
are also shown.

the one connecting to theth output load. For ,
the node with index is a connection point among the gates
and wire segments. The indexes are assigned in such a way
that if node and node are connected to an input and the
output of some component, respectively, then . For

, the node with index is the one connecting
to the th input driver. The node with index is the
output point of the input component. It is not difficult to see
that if we view the circuit as a directed acyclic graph, the node
index assignment is a reverse topological ordering of the graph.
We also label the components by indexes such that
the output of the component with indexis connected to node
. See Fig. 2 for an illustration of the circuit in Fig. 1 with

factitious components, node indexes, and component indexes.
For , let input be the set of indexes

of components directly connected to the inputs of component
. For , let output be the set of indexes of

components directly connected to the output of component
. For example, for the circuit in Fig. 2, input(0) ,

input(6) , output(6) , input(8) , and
output(8) . Note that input if and only if
output .

Let be the set of component indexes of gates in the circuit.
Let be the set of component indexes of wire segments
in the circuit. For the circuit in Fig. 2, and

.
For the purpose of delay calculation, we model components

as resistance-capacitance (RC) circuits. If component is a
gate (i.e., ), it is modeled as a switch-levelRC circuit as
shown in Fig. 3. See [24] for a reference of this model. Let

be the gate size. Then the output resistance , and
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Fig. 3. The model of componenti, which is a gate, by a switch-levelRC
circuit. Note thatri = r̂i=xi and ci = ĉixi + fi, wherer̂i, ĉi, andfi are
the unit size output resistance, the unit size gate area capacitance and the gate
perimeter capacitance of gatei, respectively. Although the gate shown here
is a two-input AND gate, the model can be easily generalized for any gate
with any number of input pins.

Fig. 4. The model of componenti, which is a wire segment, by a�-type
RC circuit. Note thatri = r̂i=xi and ci = ĉixi + fi, wherer̂i, ĉi, andfi
are the unit width wire resistance, the unit width wire area capacitance, and
the wire fringing capacitance of segmenti, respectively.

the input capacitance of a pin , where , ,
and are the unit size output resistance, the unit size gate
area capacitance and the gate perimeter capacitance of gate,
respectively. (To simplify the notations, we assume the input
capacitances of all input pins of a gate are the same. We also
ignore the intrinsic gate delay. It is clear that all our results
will still hold without these assumptions.)

If component is a wire segment (i.e., ), it is modeled
as a -type RC circuit as shown in Fig. 4. Let be the
segment width. Then the segment resistance , and
the segment capacitance , where , , and
are the unit width wire resistance, the unit width wire area
capacitance and the wire fringing capacitance of segment,
respectively. For , let and be, respectively,
the lower bound and upper bound of the value of, i.e.,

.
Elmore delay model [11] is used for delay calculation.

Basically, the Elmore delay along a signal path is the sum of
the delays associated with the resistors in the path, where the
delay associated with a resistor is equal to its resistance times
its downstream capacitance. For our case, each component
(except the two factitious components) contains a resistor.
We label the resistors by indexes such that
resistor is the one inside component. For convenience, for

, let (i.e., the driver resistance
of the th input driver). So for , the
resistance of resistoris . For , let be the
downstream capacitance of resistor. Fig. 5 shows the circuit
in Fig. 2 after replacing the components by theRC models.
The resistance of each resistor is marked in the figure. Also,
the regions corresponding to the downstream capacitances of
resistors 5 and 12 are shaded.

Let be the delay associated with resistor. We
represent a signal path passing through resistors by
the set . Let be the set of all possible paths
from node to node 0 (i.e., from an input driver to an output
load). Then for any , the Elmore delay along path
is .

III. M INIMIZING TOTAL AREA

SUBJECT TO MAXIMUM DELAY BOUND

In this section, we solve the problem of minimizing the total
component area with respect to component sizes
subject to the constraint that the maximum delay from any
input driver to any output load is at most some constant
(i.e., is a bound on the arrival time at node 0).

In Section III-A, we first show how to formulate the prob-
lem as a constrained optimization problem with a polyno-
mial number of constraints. We call this formulation the
primal problem ( ). is a geometric program. There
are many standard methods for solving geometric programs
[10]. However, because of the special structure of , we
show that it can be solved very efficiently by Lagrangian
relaxation. Lagrangian relaxation is a general technique for
solving constrained optimization problems. We outline the
basic idea of Lagrangian relaxation below. More details can
be found in [1], [13], and [14].

In Lagrangian relaxation, “troublesome” constraints are
“relaxed” and incorporated into the objective function after
multiplying them by constants called Lagrange multipliers, one
multiplier for each constraint. For each fixed vectorof the
Lagrange multipliers introduced, we have a new optimization
problem (which should be easier to solve because it is free
of troublesome constraints) called the Lagrangian relaxation
subproblem associated with ( ). It can be shown
that there exists a vector such that the optimal solution of

is also the optimal solution of the original constrained
optimization problem . The problem of finding such a
vector is called the Lagrangian dual problem ( ). So
if we can solve both and , then the optimal
solution of will be given by where is the
optimal solution of .

In Section III-B, we show how is relaxed to obtain the
and the corresponding . In Section III-C, we

use the Kuhn–Tucker conditions (see [1] for a reference) to
derive a set of optimality conditions on. We show that the
optimality conditions can be used to greatly simplify .
We called the simplified version . In Section III-D,
we show how to solve (i.e., ) for any fixed
vector . In Section III-E, we describe how to solve by
the classical method of subgradient optimization.

A. Problem Formulation

For each , the area of component is proportional to its
size . Therefore, the total component area can be written as

for some constants . Then the problem
of minimizing total area subject to maximum delay bound can
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Fig. 5. Illustration of the circuit in Fig. 2 after replacing the gates and wire segments by theRC models. The resistance of each resistor is marked in the
figure. Also, the regions corresponding to the downstream capacitances of resistors 5 and 12 are shaded.

be formulated directly as

Minimize

Subject to

However, the number of possible signal paths from node
to node 0 (and, hence, the number of constraints in the

mathematical program above) can be exponential in. So this
direct formulation is impractical.

This difficulty can be handled by the classical technique
of partitioning the constraints on path delay into constraints
on delay across components. We associate a variableto
each node. represents the arrival time at node(i.e., the
maximum delay from node to node ). Then it is not difficult
to see that the mathematical program below, which we called
the primal problem ( ), is equivalent to the mathematical
program above:

:

Minimize

Subject to
input outputs

and input

inputs

Note that the number of constraints in is polynomial in
and . Also note that for the problem , the objective

function is a posynomial [10] and the constraints can be
rewritten in the form of polynomials. It is well known that
under a variable transformation, the problem is convex. So

problem has a unique global minimum and no other local
minimum. We consider the formulation in the following.

B. Lagrangian Relaxation

We relax all the constraints on arrival time of since
they are difficult to handle. The simple constraints on the
component sizes are not relaxed. They are handled
in the Lagrangian relaxation subproblem.

Following the Lagrangian relaxation procedure, we intro-
duce a nonnegative value called the Lagrange multiplier for
each constraint on arrival time. For all input (i.e.,

), we introduce for the constraint .
For and for all input , we introduce
for the constraint . For , we
introduce for the constraint . Let be a vector of
all the Lagrange multipliers introduced. Let
and . Let

Then the Lagrangian relaxation subproblem associated with
the Lagrange multipliers is

Minimize

Subject to

Let the function be the optimal value of the problem
. We define the Lagrangian dual problem as follows:

Maximize

Subject to
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As said in Section III-A, can be transformed into a convex
problem. So [2, Theorem 6.2.4] implies that ifis the optimal
solution of , then the optimal solution of will
also optimize .

C. Simplification of

Here, we use the Kuhn–Tucker conditions to derive a set of
optimality conditions on . Then we show that the optimality
conditions can be used to greatly simplify .

For , let and be the Lagrange multipliers for
the constraints and , respectively. Consider
the Lagrangian [1] of

The Kuhn–Tucker conditions imply for
at the optimal solution of . In other words, the

Lagrange multipliers corresponding to the optimal solution of
must satisfy the conditions for
. So we can consider those Lagrange multipliers only.

By setting , we obtain the following conditions
on .

Optimality Conditions on :

for

We show in Lemma 1 below how the optimality conditions
on can be used to simplify . Let :
satisfies the optimality conditions on .

Lemma 1: For any , solving is equivalent
to solving

Minimize

Subject to

where , for

, and .
Proof: By rearranging the terms, can be rewrit-

ten as follows:

So by substituting the optimality conditions on into
, we get

(1)
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Note that in (1) no longer depends on. Also note
that is a constant. So if let

, then minimizing is the same as minimizing
. After finding the optimal , the optimal can be found

by considering, one by one, the variables’s in the order of
decreasing . For each , we set it to the smallest possible
value that satisfies the constraints of . Hence, the lemma
follows.

D. Solving

In this subsection, for any fixed , we show how
to solve optimally by a greedy algorithm based on
iteratively resizing the gates and wire segments. A similar
technique has been successfully applied to some other wire
or buffer sizing problems before (e.g., [3] and [9]). Chu and
Wong [5] proved that for wire sizing of interconnect trees,
the greedy algorithm runs in time linear to the number of
segments.

If we resize component (i.e., changing ) while keeping
the sizes of all the other components fixed, we say that it is
a local resizing of component. An optimal local resizing of
component is a local resizing that minimize .

For , let upstream be the set of resistor
indexes (excluding) on the path(s) from componentto the
nearest upstream gate(s) or input driver(s). For example, for
the circuit in Fig. 5, upstream(1) {3, 6} and upstream(6)

{8, 9, 11, 12}. Let (i.e., is a
weighted upstream resistance of component). For , let

, and for or for , let
. Note that for , is independent of .

Lemma 2: For , can be written in the
following form:

where , and are independent of ,
, and .

Proof:

For any between 1 and , . For any
, if upstream , then is independent of

. If upstream , then terms

independent of . So

terms independent of

terms independent of

Hence the lemma follows.
Lemma 3: Let be a component-sizing

solution. An optimal local resizing of componentis given by
changing the size of componentto

Proof: If we fix the size of component to for all
, and we change , we can view as a function of

. By Lemma 2, it is given by

Differentiating with respect to , we get

Let . Note that

if

if

if

Hence is decreasing when , is increas-
ing when , and is minimum at . If

is constrained to the range , we consider three cases:
Case 1— : In this case, is minimized

when .
Case 2— : Then is decreasing in .

So is minimized when .
Case 3— : Then is increasing in .

So is minimized when .
Hence the lemma follows.

can be solved by a greedy algorithm based on
iteratively resizing the components. In each iteration, the
components are examined one at a time; each time a com-
ponent is resized optimally using Lemma 3 while keeping the
sizes of the other components fixed. We call the algorithm
SOLVE_LRS/ and it is described below. Note that in order
to use Lemma 3 to resize component, we need to compute

and first. Our algorithm SOLVE_LRS/ computes ’s
and ’s incrementally by traversing the circuit in a reverse
topological order (Step 2) and in a topological order (Step 3),
respectively. So it is not difficult to see that each iteration of
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the algorithm takes only time.

SOLVE LRS

which minimizes

Finding for by traversing the circuit

in a reverse topological order

if

if

if
if

s.t. input

if

if

Finding and for by traversing the

circuit in a topological order

input

if

if

if

Repeat Step 2 and 3 until no improvement.

Note that is a posynomial [10] in . It is well
known that under a variable transformation, a posynomial
is equivalent to a convex function. So has a unique
global minimum and no other local minimum. We show in the
following that algorithm SOLVE_LRS/ always converges to
the global minimum.

Lemma 4: If algorithm SOLVE_LRS/ converges, then the
solution is optimal to .

Proof: Suppose the algorithm converges to
. Then for , by Lemma 3, ,
, . Note that is a posynomial

in , and that under the transformation for ,
the function is convex over

: , . Let where
for . We now consider three cases.

Case 1— : In this case, we have
. Thus

Case 2— : In this case,
. We have and

, . Hence

Case 3— : In this case,
. We have and

, . Hence

So for all and for all .
Thus for any feasible solution,

as is convex

Therefore, is the global minimum point.
Lemma 5: The algorithm SOLVE_LRS/ always con-

verges.
Proof: For any two vectors and , we use to

denote that for all . Let be the optimal solution,
be a feasible solution, and be the solution after locally

resizing a component of. If , then we can prove that
(this is similar to the dominance property in [7]).

In Step 1 of algorithm SOLVE_LRS/, we set for
all initially. So we know that for all , is nondecreasing
for each local resizing, and is upper bounded by. Hence,
the algorithm SOLVE_LRS/ converges.

By Lemmas 4 and 5, we have the following theorem.
Theorem 1: For any fixed vector , algorithm

SOLVE_LRS/ always converges to the optimal component-
sizing solution of the problem .

Algorithm SOLVE_LRS/ runs in time using
storage, where is the number of components andis the
number of iterations. We observe that the number of iterations

is constant (i.e., the run time of SOLVE_LRS/is linear)
in practice.

E. Solving

As we point out in Section III-C, instead of considering all
, we can focus on those . So can be

redefined as below:

Maximize

Subject to

where is the optimal value of .
By [2, Theorem 6.3.1], is a concave function over

. However, is not differentiable in general. So
methods like steepest descent, which depends on the gradient
directions, are not applicable. The subgradient optimization
method is usually used instead. The subgradient optimization
method can be viewed as a generalization of the steepest
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descent method in which the gradient direction is substituted
by a subgradient-based direction (see [1] for a reference).

Basically, starting from an arbitrary point, the method
iteratively moves from the current point to a new point
following the subgradient direction. At Step, we first solve

(by solving the simpler ). Then for each
relaxed constraint, we define the subgradient to be the right
hand side minus the left hand side of the constraint, evaluated
at the current solution. The subgradient direction is the vector
of all the subgradients. We move to a new point by multiplying
a step size to the subgradient direction and adding it to

. After each time we moved, we project back to the
nearest point in so that we can solve instead of

for the next iteration. The procedure is repeated until
it converges.

It is well known (see [2, Theorem 8.9.2] for example)
that if the step size sequence satisfies the conditions

and , then the subgradient
optimization method will always converge to the optimal
solution.

The description is summarized in the algorithm
SOLVE_LDP below.

SOLVE LDP

which maximizes

step counter

arbitrary initial vector in

Let where

Solve by calling SOLVELRS to solve

and calculating as described

in the proof of Lemma 1.

Move to a new by adjusting the Lagrange

multipliers

input

if

if

if

Project onto the nearest point in

Repeat Step 2–5 until

error bound

Theorem 2: The algorithm SOLVE_LDP always converges
to the optimal solution of .

We conclude Section III by giving the algorithm simultane-
ous gate and wire sizing by Lagrangian relaxation (SGWS-LR)

below.

SGWS-LR:

the optimal gate and wire sizing solution

Call SOLVE LDP to find the optimal

Let where

Call SOLVE LRS/ to find the optimal

Theorem 3: For simultaneous gate and wire sizing, the
problem of minimizing total area subject to maximum delay
bound can be solved optimally by SGWS-LR.

IV. EXTENSIONS

In Section III, the objective of our problem is the total
component area and the constraint is on the maximum delay
from any input to any output (i.e., the arrival time at node 0).
In this section, we extend our Lagrangian relaxation approach
to handle problems with other objectives and with other
constraints. In Section IV-A, we treat the maximum delay as
the objective and show how to minimize it. We also point
out that the problem of minimizing maximum delay subject
to total area bound is easy to handle. In Section IV-B, instead
of assuming that all the input signals arrive at time 0 and all
the output signals have a single bound on the arrival time,
we allow different arrival time specifications on the input
and output signals. In Section IV-C, we show how power
dissipation can be handled. In Section IV-D, we show that
a more accurate gate model can be used.

For all the extensions, only slight modifications to our
algorithm presented in Section III are needed. Moreover, con-
vergence to global optimum solutions is still guaranteed.
Actually, it is not difficult to see that any combination of
the problem in Section III or the extensions can be handled
similarly. For example, we can optimally solve the problem of
minimizing power subject to bounds on area and on maximum
delay from any input to any output.

A. Minimizing Maximum Delay

Instead of having a constant bound for the arrival time
at node 0, we introduce one more variable to represent
the arrival time at node 0, and we want to minimize. As
in Section III-A, by partitioning the constraints on path delay
into constraints on delay across components, the problem of
minimizing maximum delay by simultaneous gate and wire
sizing can be formulated as

:

Minimize

Subject to
input outputs

and input

inputs
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If all the constraints on arrival time are relaxed, then the La-
grangian relaxation subproblem associated with the Lagrange
multipliers will be:

Minimize

Subject to

where

As before, by the Kuhn–Tucker conditions, we have the
following optimality conditions on :

for

Then for satisfying the conditions, can be simplified
to

Minimize

Subject to

where , for

, and .
It is easy to see that can be solved optimally

by the iterative local resizing algorithm in Section III-D and
the corresponding can be solved optimally by the
subgradient optimization method as described in Section III-
V. Therefore the problem of minimizing maximum delay can
also be solved optimally by our approach.

In fact, the problem of minimizing maximum delay subject
to area bound can also be optimally solved by the Lagrangian
relaxation approach. The constraint on area can be relaxed and
incorporated into the objective function as well. The function

is of the same form as the one in Section III-B.

B. Arrival Time Specifications on Inputs and Outputs

In Section III, we assume that all the input signals arrive at
time 0 and we want to bound the arrival time at the outputs
uniformly by a single constant . We show in this subsection
that different arrival time specifications on the input and output
signals can be easily handled. We demonstrate the idea by
considering the problem of minimizing total area subject to
different arrival time constraints at inputs and outputs.

For , let be the arrival time specification
of the input signal at the th input driver. For ,
let be the arrival time requirement on the output signal at

the th output load. Then the problem can be formulated as
follows:

:

Minimize

Subject to
input outputs

and input

inputs

If all the constraints on arrival time are relaxed, then the La-
grangian relaxation subproblem associated with the Lagrange
multipliers will be:

Minimize

Subject to

where

Again, by the Kuhn–Tucker conditions, we have the following
optimality conditions on .

for

So for satisfying the conditions, we can simplify

So the Lagrangian relaxation subproblem can be formulated in
exactly the same form as the problem in Section III-
C. and can be solved as before. Therefore even
with different arrival time specifications on inputs and outputs,
the problem can still be solved optimally by our approach.

C. Power Consideration

The power dissipation of a circuit is mainly due to the
dynamic power. The dynamic power is the power dissipated in
charging and discharging capacitances in the circuit. For each
, the capacitance of componentis a linear function of its size

. Hence, the total dynamic power is also a linear function
of . In other words, the dynamic power can be
handled in exactly the same way as the total component area.

Sapatnekar and Chuang [21] showed that the short-circuit
power of gates [25] can sometimes be a nonnegligible part of



CHEN et al: SIMULTANEOUS GATE AND WIRE SIZING BY LAGRANGIAN RELAXATION 1023

the total power dissipation. We notice that our approach can
also be extended to handle short-circuit power. As pointed
out in [21], the short-circuit power of a gate is proportional
to the MOS transistor gain factor and the Elmore delays
of the driving gates. Since the MOS transistor gain factors
are proportional to the gate sizes and the Elmore delays
are posynomial functions in the gate sizes, the short-circuit
power can be written as a posynomial function. So the sum
of the dynamic power and the short-circuit power is also a
posynomial in the gate sizes.

Consider as an example the objective of minimizing power
subject to maximum delay bound. We can use Lagrangian
relaxation to handle the constraints on arrival time and use
the optimality conditions on to simplify to
as before. The only difference is that the objective function of

here consists of a weighted sum of the component de-
lays and the posynomial function corresponding to the power.
This problem can still be solved by the greedy technique as
in Section III-D. Each optimal local resizing step will be a bit
different from before. However, it is not too difficult to see
that the optimality of the greedy algorithm can still be proved
similarly.

D. More Accurate Gate Model

For higher precision timing requirements, more accurate
gate models are desirable. Although in Section II, we model a
gate as a switch-levelRCcircuit with a resistance proportional
to the gate size, better gate models can be easily integrated
into our algorithm. We now show an example of using
precharacterized function as the delay model for gates.

The following precharacterized delay function and
output slope function can capture the input slope effect as
well as the diffusion capacitance effect to the delay of gate

where is the gate size, is the input rise or fall time of
gate , is the capacitance load, , , , , , and
are precharacterized coefficients. It is not difficult to see that
while keeping the size of other components fixed, the input
slope is a linear function of since gate contributes only
the linear term to its parents’ capacitance load. Hence,
the delay of gate can be rewritten as follows:

where , , and
component is the parent of component. It is not hard to see
that after the substitution, . Hence, our
algorithm in Section III still converges to the optimal solution
under this modification.

V. EXPERIMENTAL RESULTS

We implemented our algorithms on a PC with a 333-MHz
Pentium II processor. Table I shows the experimental results

TABLE I
THE RUNTIME AND STORAGE REQUIREMENTS OF OUR

ALGORITHM ON TEST CIRCUITS OF DIFFERENT SIZES

Fig. 6. The runtime requirement of our algorithm versus circuit size.

on adders [15] of different sizes ranging from eight bits to 1024
bits. Number of gates range from 120 to 15 360. Number of
wires range from 96 to 12 288 (note that the number of wires
here means the number of sizable wire segments). The total
number of sizable components range from 216 to 21 648. The
stopping criteria of our algorithm is the solution is within 1%
of the optimal solution. The lower bound and upper bound of
the size of each gate are 1 and 100, respectively. The lower
bound and upper bound of the width of each wire are 1 and
3 m, respectively.

Table I shows the runtime and storage requirements of
our algorithm. For a circuit with 864 sizable components,
the runtime and storage requirements of our algorithm are
just 1.3 s and 1.15 Mbytes. Even for a circuit with 27 648
sizable components, the runtime and storage requirements of
our algorithm are 11.53 min and about 23 Mbytes only.

Figs. 6 and 7 show the runtime and storage requirements
of our algorithm. By performing a linear regression on the
logarithm of the data in Fig. 6, we find that the empirical
runtime of our program is about . Fig. 7 shows that
the ratio of the storage versus the circuit size of our algorithm
is close to linear. The storage requirement for each sizable
component is about 0.8 kbytes.

Fig. 8 shows the convergence sequence of our algorithm
SOLVE_LDP on a 128-bit adder. It shows that our algorithm
converges smoothly to the optimal solution. The solid line
represents the upper bound of the optimal solution and the
dotted line represents the lower bound of it. The lower bound
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Fig. 7. The storage requirement of our algorithm versus circuit size.

Fig. 8. The convergence sequence for a 128-bit adder.

Fig. 9. The area versus delay tradeoff curve for a 16-bit adder.

values comes from the optimal value of at
current iteration. Note that the optimal solution is always
in between the upper bound and the lower bound. So these
curves provide useful information about the distance between

the optimal solution and the current solution, and help users
to decide when to stop the programs.

Fig. 9 shows the area versus delay tradeoff curve of a 16-
bit adder. In our experiment, we observe that to generate a
new point in the area and delay tradeoff curve, SOLVE_LDP
converges in only about five iterations. It is because theof
the previous point is a good approximation for that of the new
point and, hence, the convergence of SOLVE_LDP is fast. As
a result, generating these tradeoff curves requires only a little
bit more runtime but provides precious information.

VI. CONCLUSION

We have presented a Lagrangian relaxation approach to
simultaneous gate and wire sizing for combinational circuits.
We have shown that this approach can handle optimally and
efficiently several different objective functions and constraints,
like minimize total area subject to maximum delay bound and
minimizing maximum delay. We have demonstrated the idea
by deriving the algorithm SGWS-LR in Section III in detail.

The Lagrangian relaxation technique reduces the problem
into two subproblems, namely the Lagrangian relaxation sub-
problem and the Lagrangian dual problem. For the Lagrangian
relaxation subproblem, we have shown that it can be greatly
simplified by the Kuhn–Tucker conditions. The simplified
Lagrangian relaxation subproblem is solved exactly by a very
efficient greedy algorithm. For the Lagrangian dual problem,
it is solved exactly by the classical subgradient optimization
method.

In this paper, Elmore delay and relatively simple gate
delay models are used. In the future, we would like to
incorporate more accurate timing models into the Lagrangian
relaxation approach. Lagrangian relaxation is such a flexible
technique that the same framework should still work for more
accurate timing models. However, maintaining the exactness
and efficiency of the algorithm would be a challenge.
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