Statistical Timing Analysis with AMECT:
Asymptotic MAX/MIN Approximation and
Extended Canonical Timing Model

Abstract— State of the art statistical timing analysis (STA)
tools often yield less accurate results when timing variables
become correlated due to global source of variations and path
reconvergence. To the best of our knowledge, no good solution is
available dealing both types of correlations simultaneously.

In this paper, we present a novel statistic timing algorithm,
AMECT (Asymptotic MAX/MIN approximation & Extended
Canonical Timing model), that produces accurate timing estima-
tion by solving both correlation problems simultaneously. Specif-
ically, AMECT uses a linear mixing operator to approximate the
nonlinear MAX/MIN operator by moment matching and develops
an extended canonical timing model to evaluate and decompose
correlations between arbitrary timing variables. Finally, AMECT
isimplemented by an intelligent pruning method to enable trade-
off runtime with accuracy.

Tested with I1SCAS benchmark suites, AMECT shows both
high accuracy and high performance compared with Monte Carlo
simulation results: with distribution estimation error < 1.5%
while with around 350X speed up on a circuit with 5355 gates.

I. INTRODUCTION

the computation complexity of block based STA will grow
linearly with respect to the circuit size. To even further speed
up the computationGaussian assumption has been widely
adopted( [6], [9], [10]) with small accuracy penalty, and all
internal timing random variables in a circuits are forced to
follow the Gaussian distribution.

However, to realize the full benefit of block based STA,
one must solve a difficult problem that timing variables in
a circuit could be correlated due to eithgipbal variation (

[6], [7], [10]) or path reconvergence( [5], [9]). As illustrated

in the left hand side of Figure Iglobal correlation refers

to the statistical correlation among timing variables in the
circuit due toglobal variations such as inter- or intra-die
spatial correlations, same gate type correlations, temperature
or supply voltage fluctuations, etéath correlation, illustrated

in the right hand side of Figure 1, refers to the correlation
resulting from the phenomenon @hth reconvergence, that

is, timing variables may share a common subset of gate or

It is well-known that the timing performance of future geninterconnect along their path histories.
erations of deep-submicron micro-architecture will be domi-

nated by several factors. IC manufacturing process parameter g
variations will cause device and circuit parameters to deviate
from their designed value. Low supply voltage for low-
power applications will reduce noise margin, causing increased
timing delay variations. Due to dense integration and non-ideal
on-chip power dissipat.ion, rising t.emp'er.ature of s.ubstrate may (a) X, Y and Z depend ony
lead to hot spot, causing excessive timing variations.

Classical worst case timing analysis produces timing predic-
tions that are often too pessimistic and grossly conservative.
On the other hand, statistical timing analysis (STA) that Several preliminary solutions have been proposed to deal
characterizes timing delays as statistical random variabgh these correlations. In [6], [7], [10] the dependence on
offers a better approach for more accurate and realistic timigdpbal variations is explicitly represented usingcanonical
prediction. timing model. In [6], an intuitively defined parametertight-

In literatures, there are two distinct approach for Spath  nessis proposed to help the propagation of global correlations.
based STA andblock based STA. The fundamental challenge However, none of these approaches has taken into account
of the path based STA [1]-[4] is its requirement to select #€ path correlations. and the intuitively defined tightness
proper subset of paths whose time constraints are statisticd¥grameter in [6] may find difficulty to accurately propagate
critical. This task has a computation complexity that growte correlation information. In [9], a method based on common
exponentially with respect to the circuit size, and hence cdpde detection is introduced to deal with the path correlations.
not be easily scaled to handle realistic circuits. However, this method does not address the issue of depen-

This potential difficulty has motivated the development oflence on global variations.
block base STA [5]-[10] that champions the notion poé- In this paper, we present a systematic STA solution, named
gressive computation. Specifically, statistical timing analysis isAMECT, that takes into account correlations causecbty
performed block by block in the forward direction in the circuitglobal variations and path reconvergence. Specifically,
timing graph without looking back to the path history. As such, « We extend the commonly used canonical timing model to

(b) X andY depend orp

Fig. 1. Global Correlations (left) and Path Correlation(right)



represent all timing variables in the circuit as a weighted « M AX: When two edges delayX and Y merge in
linear combination of a set of independent random vari- a node, a new edge delay = maz(X,Y) will be

ables. Avariation vector, consisting of all these weights, computed before the node delay is added.
is then used to explicitly represeboth global and path  |n the ADD operation, if both input delay elements and
correlation information. Y are Gaussian distributed random variables, ther X +

« We develop a novel method to decompose the correlatiopsill also be a Gaussian random variable whose mean and
between timing variables and approximate the outpygriance can be derived as:

of a nonlinear MAX/MIN operator by a linear mixing
operator. As such, the variation vector can then be easily Bz = px +py (1)
updated to retain the correlation informatiafter the 02 = 0% +o0% +2cou(X,Y) )
MAX/MIN operator.

« We further explore the sparse structure of the variatiofherecov(X,Y) = E{(X —ux)(Y — uy)} is the covariance
vector and develop éexible vector format so that the betweenX andY’.
non-significant entries of the variation vector are dynam- Due to the nonlinearity, the output delay element of the
ically dropped during computation. According to sim-MAX operator, Z = maz(X,Y), will not have Gaussian
ulations on ISCAS Circuits] this technique Significantl»distribution even when both inputS are Gaussian distributed.
Curta”s the amount of Storage and Computation requiré‘_d)r this case, Clark [11] in 1961 derived the first and second

for AMECT implementation. moments of the distribution ofuaz(X,Y): if X andY are
Sincemin(X,Y) = —maz(—X,—Y), in the interests of Gaussian and statistically independent,
brevity, in the rest of this paper, we will only discuss the MAX pz = px-Q+py(l—Q)+6P 3)
operator, with the understanding that the same results can be 9 9 9 9 9
easily adapted to the MIN operator. 0z = (nx +ox)Q+ (ny +ov)1-Q)
The rest of the paper is organized as following: In section + (ux + py)OP — p 4)

I, previous block based STA methods are reviewed brieﬂ)(/é/here 02 — 62 402, P and Q are p.d.f. and c.d.f. of
Sections Il states and proves the MAX linearization theore”s]iandard Gaus)éian é/i.stribution Bt ( S )/6: o
Section IV describes the vectorized timing format and a theo- px = Hy)/o:
rem used for correlation decompose; Section V is the detailed 1 A2 A
algorithm and technique to reduce computation complexity. £ (A) = \/—Q—ﬂexp(—g) Q) =/ P(z)dx
Section VI presents a real implementation AMECT in -

C/C++ and the testing result with ISCAS85 benchmark suiteé¥/henX andY” are correlated, similar, yet more complicated
Section VII gives the conclusions. expressions for these moments have also been derived in [11].

An intuitive solution to the non-Gaussian problem of MAX
Il. A BRIEF REVIEW OF CURRENT STA ALGORITHMS  gperator is to use a Gaussipml.f. to approximate the MAX
In timing analysis field, the circuit is modeled adiming output distribution such that the first two moments of the
graph, which is a directed acyclic graph(DAG) where eaclGaussiarp.d.f. match those derived by Clark. This approach
delay source, including both logic gates and interconnects,hias been adopted in [6], [10]. Nonetheless, they fail to address
represented as mode. Each node connects to other nodethe issue of path correlations among delay elements.
through some input and outpetiges. Nodes and edges are _ _
calleddelay elements. Each node is assigned witmadedelay A Canonical Timing Model
representing the delay incurred in the corresponding logic [6], [7], [10] proposed aanonical delay model to address
gates or interconnect segments. Tauge delay, a short term the node delay correlations through sharing global variations.
of signal arrival time at the edge, represents the cumulativte particular, they model each of the node delay as a summa-
timing delays upto and including the node that feeds into th#n of three terms:
edge. Thehistory or path history of the edge delay is then
defined as the set of node delays through which the signal ni =i+ iR+ 3G, )
arrives at this edge ever passes. j=1
Different from classical timing analysis, the statistical timwheren;(: = 1,2, ...) are random variables corresponding to
ing analysis models delay elements emdom variables, the thei'" node delay in the timing grapl; is the expected
which are characterized by itprobability density func-  value ofn;; R;, (namednode variation), is a zero-mean, unity
tion(p.d.f.) or cumulative distribution function(c.d.f.). The pur-  variance Gaussian random variable representing the localized
pose of statistical timing analysis is then to estimate the edg&itistical uncertainties of;; G, represents thg" global
delay distribution at the primary output of the circuits knowingzariation, and is also modeled as a zero-mean, unity variance
input edge delay distributions and all internal node delagaussian random variabléR,;} and {G,} are additionally
distributions. This is accomplished through two operators [S}issumed to be mutually independent; the weight parameters
o ADD: When an input edge dela¥ propagates through (namednode sensitivity) and 3; j(namedglobal sensitivities)
a node delay’, the output edge delay will h8 = X +Y  are deterministic constanexplicitly expressing the amount of



dependence ofi; on each of the corresponding independertaused byboth global parameter variations and path reconver-
random variables. gence.

With this canonical representation, the correlation (covari-
ance) between any two node delays,andn;, can be easily [Il. LINEAR MIXING APPROXIMATION OF MAX

evaluated. In some of the current STA tools, the output of a MAX

cov(ng, ni) = E{(n; — i) (ng — px)} = Zﬁmﬂm (6) Operator is approximated by a Gaussian distribution with its
. first two moments matching those derived by Clark (Equations

(3 and 4)). However, the resulting Gaussian distribution will

lose most of the correlation information between the input

edge delays.

B. Existing Method for Handling Correlations In this paper, instead of generating the Gaussian distribution

ﬁt the MAX output directly, we propose to model the nonlinear

Delay elements in a timing graph, including node dela X ith iahted I . Clear]
and edge delays, may become correlated due to sharing glo%% operatorwith a weighted linear mixing operator. Clearly,

variations and/or common path histories. Multiple methods Nputs to the linear mixing operator are Gaussian distributed,

handling one of these two types of correlations have be&f well the Ol_Jt_DUt after the linear mixing pperation. )
proposed to get more accurate STA estimation. More specifically, we choose the weights of the linear
In [6], [7], [10], the canonical timing model of Equation (5)m|xmg o) _that _the_ f|rs_t two moments of t_he resulting out-
is directly applied into the edge delays in a timing graph. Thikut G.aussmn dlstrlbutlon_ match those derived by Clark (cf.
direct usage implicitly assumes that edge delay only deperg@uation (3 and 4)). While our method produces the same
on global variations and no path correlation occurs in th@PProximated distribution at the output of a MAX operator,
timing graph. This method will work well apparently onlythe _vve|ghted Ime_ar mixing fo_rmula_t|0n makes it pos_3|ble to
when global variation dominates the correlations in the timinfFt@in the correlation information using axtended canonical

graph but will have severe problem where path correlation {§Tng mode! discussed in the next section. By preserving the
important.

correlation information after the nonlinear MAX operators, the
The authors in [6] propose the use tijhtness to retain accuracy of the STA can be significantly improved.

global correlation information through the nonlinear MAX _ 1heorem 1 (Max Linearization): Let X, Y and Z be

operation. The global sensitivities of the output edge deldg@ussian random variables and that cov(X,Y) = 0. If the

from a MAX operation is treated as a tightness-based supg8st tWo moments of Z match those of the random variable
(X,Y), then there must exist a constant, p, 0 < p < 1,

sition of the global sensitivities of the input edges delays. Thig4* o :
method is valuable since it hints to use linear supposition §&//€d the contribution factor, such that:

J

Note that random variable$R;, Ry, G;(j = 1,2,...)} are
mutually independent.

the replacement of nonlinear MAX operation. But using the A X

ST . , - - ) =p-X+1—-p)- Y+ 7
intuitively defined tightness as the supposition coefficient is P (1=) ¢ 0
not a suitable choice as revealed in section Il where ¢ is an arbitrary constant.

In [9], a common node detection procedure is introduce to  Proof: Since random variablg is a Gaussian approx-
deal with the path correlation. This method assumes thatifhation of maz(X,Y), it will then be fully determined by
two edge delaysX andY’, ever pass a common node whosgs first two moments given in Clark Equations If another
output edge delay 8/, thenX = X'+W andY =Y'+W. Gaussian random variabl¢/ = p- X + (1 —p)-Y + satisfies
Operationmaz(X,Y) is then done asV + max(X' +Y’).  the following two moment matching equations:

This is not a good approximation sincE€ and Y usually

don't have such a strong dependence Wh A counter pz = pz=p-px + (1 —=ppy +¢ (8)
example is illustrated in Figure 2 where bakh andY are 0% = 0% =plokx +(1-p)od 9)
theoretically dependent oil/. But practically speakingX

will be independent oV if U >> W and similarlyY will thenZ andZ’ must be identical.

be independent ol if V >> W. Solution to the mean matching Equation (8) will always
exist since it is only a linear equation. So the proof becomes
U to guarantee real solutions for the quadratic variance matching

Equation (9). This is equivalent to confirm:

W, o202
U% > % (10)
Y 0% + 0oy
\%

Using Clark’s equations (3 and 4), the above inequality (10)
Fig. 2. Example to Fail Common Node Approach is proved in Appendix | and solutions to Equation (9) will be:

To the best of our knowledge, existing STA methods have oy \/( ok )2 0% — 0% (11)

yet to offer a solution to deal with the correlation problem % = o% + 0% o% + 0% 0% + 0%



Also proved in Appendix II, ifo2 > 0%, 0 < p_ < 1. If Assertion |: If X is a node delay, then it will automatically
02 < 0%, 0 < p; < 1. So by switching the contribution fac- have the extended canonical delay format because Equation
tor p betweenp_ andp, according to the relative magnitude(5) is a subset of Equation (12) in that féf* node delay,
of ag( and02y, 0 < p < 1 can always be guaranteed. B only oneax ; has non-zero value while all othery ;. are
set to zero.

Assertion Il: If X = A + B and delay elementsi, B
fit Equation (12) then X must have extended canonical delay
format.

Assertion I11: If X = maxz(A, B) given that delay elements
A, B fit Equation (12), Theorem 4 guarantees that A’ +
W,B=DB+W, cov(A’,B") =0 and A’, B’, W will also
fit Equation (12). SaX = maz (A4, B) = max(A’ + W, B’ +
W) =W+max(A',B") = W+pA'+(1—p)B’+¢ according
to Theorem 1. SoX will have delay format of Equation (12).

Fig. 3. Mont Carlo and Theorem Result Comparison Any delay element, if it is not a node delay, can ultimately
be expressed as the result of one or multiple steps of ADD

In Figure 3(a), thep.d.f.s of two independent Gaussianand/or MAX operations from node delays. So based on the
random variablesX andY are shown in the left panel. The above three assertions, the mathematical induction principle
p.d.f. from Monte Carlo method for a MAX operator andguarantees that all delay elements will have the extended
its Gaussian approximation from the linear mixing operataranonical format of Equation (12). ]
are shpwn_ to'the right side panell. Clearly, the Gauss%\r? \Ariation Vector
approximation is adequate to approximate the MAX operator. ) .

Notice that the above theorem doesn’t guarantee the MAX 1he extended canonical format of Equation (12) can be
operation on twocorrelated Gaussian random variables carf€Written in a compacted vector format as
e_lls_o b_e approximated by a Iinegr m_ixing operator. But _this X = ux+z"b (13)
limitation will not affect the applicability of the theorem in
STA. Correlated random variables modeling delay elemeri§ere
in a circuit timing graph can always be decomposed into b=[Ry, -+ ,Rn.G1, -, Gu|"

@ndepe_ndent delay elements according to Theorem 4 preseqréadd random vector consisting of zero-mean, unity variance
in section IV_—B. And MAX on these correlated delay elememﬁﬂdependent Gaussian random variables and
can be equivalent to a MAX on the decomposed delay ele-

(@) p.d.f.of X andY (b) p.d.f. of maz(X,Y)

ments followed by an ADD operator. Smly MAX operation z=laxi, ,ax.N,Bx1, ,5X,M]T
nin ndent random variables is involved for th r . .
gf STiepe dent random variables is involved for the pu po|Ssea deterministic vector and is thariation Vector(v.v.) of X.

So Each delay elemer() in a circuit will be uniquely

IV VARIATION VECTOR AND CORRELATION represented by its meang) and variation vectox), noted as

DECOMPOSITION X =X(ux,x) (14)

The canonical timing model [6], [7], [10] is a powerful ~with equation (12), both global and path correlations can
tool to represent the numerous delay elements for a givee handled elegantly. More specifically, global variations are
circuit. However, in its original format, it can only handlerepresented by the set of global sensitivity terfris; ; }, and
node delay correlations caused by global variations. In thifependence on path history are represented by non-zero node
work, we propose armextended canonical timing model that  sensitivity termsa Xk

is capable of capturell the correlation between any pair of From definition, it is easy to verify the following properties
delay elements in the circuit be it a node delay or an edggr variation vector:
delay. Theorem 3: Assuming k and ¢ are constants and z, y, z
Theorem 2 (Extended Canonical Timing Model): are variation vectors of delay elements X, Y, Z.
Assume that there are N nodes and M global variations in (1) X and X + ¢ have the same variation vector of z:;
the timing graph, if every node delay can be modeled by the @ fZ=X+Ythenz=z+y;
canonical format of Equation (5), then every delay element, (3) If Z = kX, then z = k.
including all the node delays and edge delays will then have @) 0% =27z = ||z
a extended canonical timing model as: ) cov(X,Y)=2T y=yT -z
N M Property (1) indicates that variation vector remains un-
X = ux+ ZQX’ZRZ. + Zﬁx,jGj (12) chqnged !f a constant is added to 'the correspom_jing rqndom
i—1 = variable since variation vector contains only the variance infor-
Proof: Using the mathematical induction principle: mation of the random variable while the added constant only



affects the mean of the random variable. Properties (2) and B all MAX operations on dependent delay elements can be
are the basis of variation vector propagation discussed lateimplified as a MAX operation on independent delay elements
Properties (4) and (5) make variation vector an convenient afmllowed by an ADD operation and so that the computation

systematic way to evaluate the variances and correlations feitl be greatly simplified.

any delay elements. V. PROPAGATING MEAN AND VARIATION VECTOR

B. Correlation Decomposition In a timing graph, the mean and variation vector of a
L . node delay is obtained from technology extraction. To get
. _Due to 5|mpI|_C|ty of handling independent delay elementsd thogonality required by the mean amdy. representation
it is usually desirable to decompose correlated delay elemen 7 )
S . . of delay elements, Principle Component Analysis may be
into independent ones. A typical method is to to use so Callec%nducted after extraction.( [10]) But this is done only once
Principle Component Analysis(PCA). [12] ) y

However, MAX operation isnot communicative with gen- for a specific technology and SO that is_ not considered as a
eral linear t’ransformation operators part of STA. A STA algorithm, ms_tea_d, will take those node’s
¢ means and variation vectors as its input and calculate edge’s
maz{U(X,Y)} # U(maz{X,Y}) mean and variation vector in the entire circuit.

so little benefit can be obtained by applying it to calculate th%' Algorithm for ADD and MAX Operations

MAX output for two correlated delay elements. Through an ADD operation

Based on the canonical timing model of delay elements, Z(uz,z) = X(ux,x) + Y (py,y)
there exists a much more elegant way to decompose t\%oe mean and.v. propagation is straiahtforward:
correlated delay elements: V- propag 9 '

Theorem 4 (Correlation Decomposition): Let delay ele- Mz = px +py (16)
ments X and Y in a circuit be represented in the extended z = x+y (17)
canonical delay model representation. If X and Y are cor-
related, then there will be a third delay element W also in
the extended canonical delay model representation such that
cov(X =W, Y —W) =0. -

It is very easy to verify the consistency between this variation
vector approach and Equation (2).

. . X', Y")=0
Proof: Assume variation vectors o andY arex = coveeY)
(z1,22, -+ ,onym)T andy = (y1,92,- - ,yn+m) T, then a Decompose
new variation vector ofw = (wy,ws, - ,wxiar)’ can be Kol yoxcw
constructed as: vag R

w; = min(x;, y;) 1=1,2,--- N+ M (15)
Fig. 5. Z = maxz(X,Y) whencov(X,Y) # 0
This construction procedure is illustrated in Figure 4
The mean and variation vector propagation through MAX

operation,
x=[x] XZ Vs X4 ...... x;\'\.’t]
[ ] Z(/j‘Zaz):max{X(MXaw)aY(ﬂYvy)}
y= 2 13 EO YN+ M
‘T]" .TZ., Tg.. .‘;, _,,\,I,,f is illustrated in Figure 5 where totally four computation steps
{ wemminGyy) are involved:
¥ ¥ ¥ ¥ i (1) Correlation Decomposition
w= [w[ wz wj %;, u\}M‘] , ,
X(px,z) = X'(ux,z')+W(pw,w)
Fig. 4. Correlation Decomposition Procedure Y(MYay) — Y’(uw,y') + W(HW/U’)

wherecov(X', V") =a'" -y’ =0

(2) Calculateuz andoz for Z' = max(X’,Y”) from Clark
Equations (3 and 4)

I(3) Calculate contribution factop for 7/ = maxz(X’',Y”)
from Equation (11) of MAX linearization Theorem.

So if a random variabl@V is defined agV = W (uw, w)
with arbitrary mean value gl , thencov(X — W)Y —W) =
(x — w)T(y — w) = 0 since it is impossible foz — w)
and (y — w) to have common non-zero components in thei
variation vectors.

With this method of correlation decomposition, correlated® Final Results forZ = max(X,Y)
delay elements{ andY are decomposed int&’, Y/ and W bz = pz + pw (18)
asX = X'+ WandY =Y’ + W andcov(X',Y') = 0. z = pr'+(1-py +w (19)

What is more interesting is that this decomposition procedure

is communicative with the MAX operation: If there are more than two delay elements involved in the

MAX operation, then MAX is done iteratively by MAX two
maz(X' + W, Y' + W) =W + maz(X",Y") delay elements at each iteration.



B. Exploration of Sparsity nor2, nor3 and xor/xnor. Table | summarizes the gate count

Since there areN nodes in a timing graph, and eachfor €ach test circuit after gate re-mapping.
node delay as well as corresponding edge delay will have a
N+ M dimensional variation vector, the total computation and
storage required will b€ (N (N + M)) ~ O(N?). However,
while working with benchmark circuits, we noticed that many Name c432 | c499 | ¢880 | c1335] c1908
components in the variation vector have very small values, GatNe Counts 2230 g;io gg}s ngs 17158582
. . . . . . . ame C C C C Cc
|nd|cat|_ng t_ha_t thelr_ _contrlbutlons _to the overall correl:_:\t!on Gate Countsl 2004 T 2485 | 3865 | 2704 | 5355
evaluation is insignificant. By setting these small coefficient
to zero, the variation vector will become a sparse vector that . . .

. P All library gates are implemented if.18um technology
contains many zero components. . . X .
. . ; and their delays are characterized by Monte Carlo simulation

Motivated by this observation, we developed a novel tech-. ) o .

. . : . ~with Cadence tools assuming all variation sources, either
nique called thdlexible vector format to exploit the sparsity o . - .
O . .7 process variations or operational variations, follow Gaussian
of the variation vector. In particular, we focus on curtalllngg

. istribution.
node part of the variation vectat,x ;, that have small values. For illustration purpose, only three parameter variation are
For this purpose, drop threshold is selected so that ik x ; is purpose, only P

smaller than this threshold, it is deemed to have small Val&gnsidered global: channel length(L), supply voltage(vdd)

and will be placed into a drop candidate pool to be prunea d temperature(T). All _other variation sources, spec_:lﬁed_m
T . the 0.18um technology file, are assumed to be localized in
from the variation vector representation.

However, droppingy x ; with small magnitude is the Samethe considered gate only. Also we don’t address the spatial

as applying truncation to the variation vector. In subsequeﬁ?pendency of the gate delays just for demonsration purpose.

computations, the quantization error may accumulate, Caug_real life, gate timing parameters are position dependent and

ing non-negligible error. This is a problem that can not p&Y" method is still applicable.
overlooked for large circuits. Our solution to this problem is Accuracy and Performance
to lump those components in the drop candidate pool into a
single correction term

TABLE |
ISCAS85 BENCHMARK CIRCUITS

Monte Carlo simulation results with 10,000 repetitions are
used as “Golden Value” for each benchmark circuit. Each
Tpool = \/Z xgmpp e Components (20) repetition is a process of static timing analysis by fixing global
o . and node variation into a set of randomly sampled values. The
When two variation vectors merge through either ADD 0g|obal variations are sampled once for each repetition while
MAX operation, their pooling components are assumed t0 bgyde variation for each gate is newly sampled every time when

independent. Hence, the gate is computed.
5 5 Table Il summarizes the edge delay distribution parameters
— 2 2
Zpool(ADD) - = pool T Ypool (1) at the primary output of each testing circuit from Monte
2 (MAX) = 202 4 (1= p)2y2 22y Carlo(M.C.) and two flavors of STA methods usiA(MECT.
poo ) \/p oot + (1 =PV Y00t (22) For comparison purpose, a fourth STA methgoCorr with
C. Complexity and Path Correlation Length no correlation considered is also implemented and simulated.

Using this drop and poo| mechanism, what is rea”y droppgd and o are mean and standard variation of the distribution.
during computation is then the path correlation. So the lengthr = ¢ + 20 is the delay estimation at confidence level of
of the variation vector actually gives a good indication to th87%. The accuracy of STA methods compared with Monte
extent of path correlation in the circuit. Tipath correlation ~ Carlo method, is evaluated in Table III.
length(I") of the circuit is then defined to be the average length The drop threshold iAMECT will determine the extent at
of node part of the pruned variation vectors for a given droyhich the path correlation is considered. MethdighAccu is
threshold. the high accuracy version é§MECT when drop threshold is

With this notation, the computation complexity can bé&et into1% and most path correlations are considered while
reduced fromO(N2) down to O[(T" + M) - N]. Simulation mMethodHighPerf is the high performance version AMECT
results indicated thaF << N and is not a function ofy. With drop threshold ofl00% and only global correlation is
Hence it represents a significant reduction of computation ag@nsidered.

storage. From Table Ill, it is very clear that methodoCorr fails
to give reasonable variance estimation because no correlation
VI. SIMULATION RESULTS AND DISCUSSIONS is considered which gives a good example for the importance

The above described algorithm has already been implef correlations in STA. It is also notable thaloCorr can
mented in C/C++ with name oAMECT and tested by still have fairy reasonable mean estimation which tells that
ISCAS85 benchmark circuits. the mean delay is not so sensitive to the correlation. This

Before testing, however, all benchmark circuits are ranteresting phenomenon may come from the ADD operation
mapped into a library which has gatesraft, nand2, nand3, whose variance is very sensitive to the input correlation.



TABLE Il TABLE IlI

TESTINGRESULTS FORISCAS BENCHMARKS DISTRIBUTION ERRORRESPECTING TOMONTE CARLO RESULTS

STA CPU Delay Distribution[ps] Circuit Mean Errorfy) Variance Error§o)
Circuit Method Time[s] m o To7 HighAccu | HighPerf [ NoCorr | HighAccu | HighPerf | NoCorr
c432 0.79% 4.64% 8.05% 0.50% 1.50% 89.8%
M.C. 6.449 1288.8 219.3 17275 c499 1.04% 4.82% 6.99% 0.89% 0.34% 88.5%

c432 HighAccu 0.030 1299.0| 220.4 | 1739.9

c880 0.15% 1.22% 1.81% 0.53% 0.79% 93.8%
HighPerf | 0010 [ 13486[ 216.0 [ 1780.7 c1355 | 1.07% | 581% | 632% | 028% | 095% | 95.0%
NoCorr 0.000 | 13926]| 223 | 1437.1 c1908 | 0.75% 2.93% | 3.66% | 0.27% 0.24% | 91.8%
M.C. 8.182 | 1073.6| 178.9 | 14314 c2670 | 0.35% 3.09% | 4.58% 0.00% 0.84% | 94.3%
c499 HighAccu 0.030 1084.8| 180.5 | 144538 ¢3540 0.19% 3.75% 4.10% 0.66% 0.36% 95.3%
HighPerf 0.010 11254 178.3 | 1482.0 c5315 0.23% 3.12% 6.06% 0.11% 0.09% 92.8%
NoCorr 0.000 11486 | 205 11895 c6288 0.53% 8.17% 8.68% 0.65% 1.06% 98.8%
M.C. 14.831 | 14454 | 266.3 | 19779 c7552 0.25% 3.27% 6.05% 1.46% 1.09% 92.5%

c880 | HighAccu 0.050 14476 2649 | 1977.3
HighPerf 0.010 1463.1| 264.2 | 19115
NoCorr 0.010 14716| 16.5 1504.5

accuracy with performance in some circumstances.

M.C. 19.007 | 14454 2514 | 19483 )
c1355 [ HighAccu | 0.071 | 1460.9| 250.7 | 1962.3 To further elaborate the accuracy 8MECT, Figure 6
HighPerf | 0.010 | 1529.4| 249.0 | 2027.4 shows thep.d.f. and c.d.f. for circuit c6288 from three
Nocorr 0.000 | 155681 125 | 15618 methods: Mont Carlo and two methodsAM ECT (HighAccu
M.C. 35.801 | 1828.2| 327.3 | 24828 S g
c1908 [ HighAccu | 0.150 | 1841.90| 3284 | 24986 andHighPerf). Apparently enoughAMECT shows excellent
HighPerf | 0.030 | 1881.7 | 326.5 | 2534.7 accuracy if most path correlation is considered as in method
NoCorr | 0.010 | 1895.1| 27.0 | 1949.2 HighAccu
M.C. | 72.163 | 2097.0 | 382.9 | 2862.8 9 :

€2670 [ HighAccu | 0.181 | 2104.4| 382.0 | 2870.1
HighPerf | 0.050 | 2161.8| 379.7 | 2021.2
NoCorr 0.020 | 21931 220 | 22371 !
M.C. 84.020 | 2747.2| 498.8 | 37448 R
¢3540 [ HighAccu | 0.240 | 2752.3| 502.1 | 37565

HighPerf | 0.050 | 2850.3| 500.6 | 38515 :
NoCorr 0.020 | 2859.7| 23.4 | 29065
M.C. 140.832 | 2399.3 | 441.7 | 32826 *
¢5315 [ HighAccu | 0.641 | 2404.8| 442.2 | 32892
HighPerf | 0.080 | 2474.1| 441.3 | 3356.7 A
NoCorr 0.040 | 25448 31.7 | 2608.2

Delaylps]

M.C. 114.235| 6740.1 | 1286.8 | 9313.6 (a) p.d.f. from Three Methods (b) c.d.f. from Three Methods
6288 | HighAccu 5.198 6775.9| 1275.1| 9326.2
HighPerf 0.070 7290.8| 1273.1| 9836.9 Fig. 6. p.d.f. andc.d.f. comparison for c6288 from three methods

NoCorr 0.030 7325.1| 14.9 7355.0
M.C. 202.972| 1911.7| 348.7 | 2609.0
c7552 | HighAccu 0.571 1916.6 | 353.8 | 2624.2

HighPerf | 0.110 | 19743 3525 | 2679.3 TABLE IV
NoCorr 0.050 20274 263 2080.1 PATH CORRELATIONLENGTH AT 1% OF DROPTHRESHOLD

Name | c¢432 c499 c880 | c1335| c1908
T 22.0 111 14.2 19.3 27.0

) — Name | c2670 | c3540 | c5315| 6288 c7552
Table 11l also shows thatlighPerf have significantly larger T 154 | 212 | 1424 | 809 | 160

error in mean estimation thadighAccu. This is reasonable
becauseHighAccu will overestimate the mean at every MAX
operation due to smaller correlation considered and this ov@r Path Correlation Length

estimation is accumulated through distribution propagation. |t has been mentioned in Section V-C that path correlation
It is also interesting to notice thafighPerf and HighAccu length ) provided by AMECT is an interesting macro
give similar accuracy in variance estimation. This is possiblyroperty of the simulated circuit and gives a good indication
because of the fact that the variance is dominated by gloRgl the extent of the path correlation existing in that circuit.
variation in the tested cases. For the above ISCAS circuits, the path correlation lerigth(
Of course, Monte Carlo simulation gives the best STAt drop threshold of % is summarized in Table IV.
results but with big runtime penalt AMECT runs order- From Tale IV, we can firstly conclude that the correlation
of-magnitude faster but can provide both mean and varianngthT" is much smaller than the circuit size and basically
estimation almost as accurate as Monte Carlo does if mostinflependent on the circuit size since it remains ali@ut 20
the path correlations are considered as the casekghfAccu  when circuit size changes dramatically. This observation helps
shown in Table Il and Ill. If the accuracy on mean estimatiothe conclusion we made before about the complexity reduction
can be relaxed, then the drop threshold can be higher aotdAMECT by using the technique of flexible vector format.
AMECT will give some mean overestimation but with better Secondly, the only exceptional high path correlation length
performance in runtime. In another wollM ECT is param- among the tested circuits happens with the circuit c6288
eterized by the drop threshold and can be used to trade-wffiich is known as a 16-bit array multiplier. Since there
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(a) Verifying Inequality 23

Fig. 7.

are large amount of equal delay paths in the circuit, large
path correlation length is natural: Few node variation can be
dropped due to the equal importance.

(b) Verifying 0 < p— <1

(c) Verifying0 < py <1

Numerical Results for Appendix | and Il

APPENDIXII
BOUNDING THE CONTRIBUTION FACTOR

After scaling and shifting described in Appendix I, the root

p will have the form of:

VII. CONCLUSIONS

This paper presents a novel method for block-based statisti-

1
pi = 751+ V/1-2Q6 + A9 (24)

cal timing analysis. Applying the generally accepted Gaussianif ¢ > 0%, thenl < §? < 2 and0 < p_ < 1 as shown
assumption, we firstly disclose that the MAX operation caim Figure 7(b). Similarly, ifo? < o%, then§? > 2 and0 <

be approximated by linear supposition of its inputs. Second)y, < 1 as shown in Figure 7(c).

we extend the commonly used canonical timing model into a So by switching the contribution factgr betweenpy _ and
vectorized format, variation vector. We also disclose a novgl, according to the relative magnitude of, ando?, 0 <

method to decompose correlated timing variables into indg-< 1 can always be satisfied.

pendent ones to simplify computation. With these theoretical

progress, we are able to evaluate and propagate the global and

path correlation systematically in the circuit timing graph. [1]
We also design a novel algorithkM ECT which treat both

global and path correlation simultaneously and systematically.
This algorithm, with the help with a new flexible vector format [2]
achieves high accuracy and high performance at the same ti
as tested by ISCAS circuits and compared with Monte Carlo
“golden value”.

(4]

APPENDIX |

EXISTENCE OFCONTRIBUTION FACTOR [5]

Clearly, maz(X + ¢,Y + ¢) ¢ + maz(X,Y) and
max(kX,kY) = k-max(X,Y) for any constant > 0 andc.
So the variance matching Equation (9) will not chang&if  [6]
Y and Z are shifted and positively scaled at the same time;
So the solution op to the scaled and/or shifted equation will
also be the solution to the original one. So no generality will
lose if we additionally assumex =y, py =0, 0% = 0°, [g]
ando? = 1.

Applying results from Equations (3 and #,(Z) = nQ + o]
0P, E(Z*) = (1 + 0> —1)Q + P +1, 0 =1+ 0% and [1q
A = /6, It is then sufficient to prove the inequality (10) if:

DN =A—-Q2>0 1]

(23)
(12]
where A = (1 + A2 —2AP)Q + (A — P)P — \2Q%.
SinceD(A) is only a function of\, numerical evaluation in
Figure 7(a) shows that it is always positive. So the inequality
(10) is proved and the existence of the contribution factor is

guaranteed.
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