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Abstract— State of the art statistical timing analysis (STA)
tools often yield less accurate results when timing variables
become correlated due to global source of variations and path
reconvergence. To the best of our knowledge, no good solution is
available dealing both types of correlations simultaneously.

In this paper, we present a novel statistic timing algorithm,
AMECT (Asymptotic MAX/MIN approximation & Extended
Canonical Timing model), that produces accurate timing estima-
tion by solving both correlation problems simultaneously. Specif-
ically, AMECT uses a linear mixing operator to approximate the
nonlinear MAX/MIN operator by moment matching and develops
an extended canonical timing model to evaluate and decompose
correlations between arbitrary timing variables. Finally, AMECT
is implemented by an intelligent pruning method to enable trade-
off runtime with accuracy.

Tested with ISCAS benchmark suites, AMECT shows both
high accuracy and high performance compared with Monte Carlo
simulation results: with distribution estimation error < 1.5%
while with around 350X speed up on a circuit with 5355 gates.

I. I NTRODUCTION

It is well-known that the timing performance of future gen-
erations of deep-submicron micro-architecture will be domi-
nated by several factors. IC manufacturing process parameter
variations will cause device and circuit parameters to deviate
from their designed value. Low supply voltage for low-
power applications will reduce noise margin, causing increased
timing delay variations. Due to dense integration and non-ideal
on-chip power dissipation, rising temperature of substrate may
lead to hot spot, causing excessive timing variations.

Classical worst case timing analysis produces timing predic-
tions that are often too pessimistic and grossly conservative.
On the other hand, statistical timing analysis (STA) that
characterizes timing delays as statistical random variables
offers a better approach for more accurate and realistic timing
prediction.

In literatures, there are two distinct approach for STA:path
based STA andblock based STA. The fundamental challenge
of the path based STA [1]–[4] is its requirement to select a
proper subset of paths whose time constraints are statistically
critical. This task has a computation complexity that grows
exponentially with respect to the circuit size, and hence can
not be easily scaled to handle realistic circuits.

This potential difficulty has motivated the development of
block base STA [5]–[10] that champions the notion ofpro-
gressive computation. Specifically, statistical timing analysis is
performed block by block in the forward direction in the circuit
timing graph without looking back to the path history. As such,

the computation complexity of block based STA will grow
linearly with respect to the circuit size. To even further speed
up the computation,Gaussian assumption has been widely
adopted( [6], [9], [10]) with small accuracy penalty, and all
internal timing random variables in a circuits are forced to
follow the Gaussian distribution.

However, to realize the full benefit of block based STA,
one must solve a difficult problem that timing variables in
a circuit could be correlated due to eitherglobal variation (
[6], [7], [10]) or path reconvergence( [5], [9]). As illustrated
in the left hand side of Figure 1,global correlation refers
to the statistical correlation among timing variables in the
circuit due to global variations such as inter- or intra-die
spatial correlations, same gate type correlations, temperature
or supply voltage fluctuations, etc.Path correlation, illustrated
in the right hand side of Figure 1, refers to the correlation
resulting from the phenomenon ofpath reconvergence, that
is, timing variables may share a common subset of gate or
interconnect along their path histories.
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Fig. 1. Global Correlations (left) and Path Correlation(right)

Several preliminary solutions have been proposed to deal
with these correlations. In [6], [7], [10] the dependence on
global variations is explicitly represented using acanonical
timing model. In [6], an intuitively defined parameters,tight-
ness is proposed to help the propagation of global correlations.
However, none of these approaches has taken into account
the path correlations. and the intuitively defined tightness
parameter in [6] may find difficulty to accurately propagate
the correlation information. In [9], a method based on common
node detection is introduced to deal with the path correlations.
However, this method does not address the issue of depen-
dence on global variations.

In this paper, we present a systematic STA solution, named
AMECT, that takes into account correlations caused byboth
global variations and path reconvergence. Specifically,

• We extend the commonly used canonical timing model to



represent all timing variables in the circuit as a weighted
linear combination of a set of independent random vari-
ables. Avariation vector, consisting of all these weights,
is then used to explicitly representboth global and path
correlation information.

• We develop a novel method to decompose the correlations
between timing variables and approximate the output
of a nonlinear MAX/MIN operator by a linear mixing
operator. As such, the variation vector can then be easily
updated to retain the correlation informationafter the
MAX/MIN operator.

• We further explore the sparse structure of the variation
vector and develop aflexible vector format so that the
non-significant entries of the variation vector are dynam-
ically dropped during computation. According to sim-
ulations on ISCAS circuits, this technique significantly
curtails the amount of storage and computation required
for AMECT implementation.

Sincemin(X, Y ) = −max(−X,−Y ), in the interests of
brevity, in the rest of this paper, we will only discuss the MAX
operator, with the understanding that the same results can be
easily adapted to the MIN operator.

The rest of the paper is organized as following: In section
II, previous block based STA methods are reviewed briefly;
Sections III states and proves the MAX linearization theorem;
Section IV describes the vectorized timing format and a theo-
rem used for correlation decompose; Section V is the detailed
algorithm and technique to reduce computation complexity.
Section VI presents a real implementation ofAMECT in
C/C++ and the testing result with ISCAS85 benchmark suites;
Section VII gives the conclusions.

II. A B RIEF REVIEW OF CURRENT STA ALGORITHMS

In timing analysis field, the circuit is modeled as atiming
graph, which is a directed acyclic graph(DAG) where each
delay source, including both logic gates and interconnects, is
represented as anode. Each node connects to other nodes
through some input and outputedges. Nodes and edges are
calleddelay elements. Each node is assigned with anode delay
representing the delay incurred in the corresponding logic
gates or interconnect segments. Theedge delay, a short term
of signal arrival time at the edge, represents the cumulative
timing delays upto and including the node that feeds into the
edge. Thehistory or path history of the edge delay is then
defined as the set of node delays through which the signal
arrives at this edge ever passes.

Different from classical timing analysis, the statistical tim-
ing analysis models delay elements asrandom variables,
which are characterized by itsprobability density func-
tion(p.d.f.) or cumulative distribution function(c.d.f.). The pur-
pose of statistical timing analysis is then to estimate the edge
delay distribution at the primary output of the circuits knowing
input edge delay distributions and all internal node delay
distributions. This is accomplished through two operators [5]:

• ADD: When an input edge delayX propagates through
a node delayY , the output edge delay will beZ = X+Y

• MAX : When two edges delaysX and Y merge in
a node, a new edge delayZ = max(X, Y ) will be
computed before the node delay is added.

In the ADD operation, if both input delay elementsX and
Y are Gaussian distributed random variables, thenZ = X +
Y will also be a Gaussian random variable whose mean and
variance can be derived as:

µZ = µX + µY (1)

σ2
Z = σ2

X + σ2
Y + 2cov(X, Y ) (2)

wherecov(X, Y ) = E{(X−µX)(Y −µY )} is the covariance
betweenX andY .

Due to the nonlinearity, the output delay element of the
MAX operator, Z = max(X, Y ), will not have Gaussian
distribution even when both inputs are Gaussian distributed.
For this case, Clark [11] in 1961 derived the first and second
moments of the distribution ofmax(X, Y ): if X andY are
Gaussian and statistically independent,

µZ = µX · Q + µY (1 − Q) + θP (3)

σ2
Z = (µ2

X + σ2
X)Q + (µ2

Y + σ2
Y )(1 − Q)

+ (µX + µY )θP − µ2
Z (4)

where θ2 = σ2
X + σ2

Y . P and Q are p.d.f. and c.d.f. of
standard Gaussian distribution atλ = (µX − µY )/θ:

P (λ) =
1√
2π

exp(−λ2

2
) Q(λ) =

∫ λ

−∞
P (x)dx

WhenX andY are correlated, similar, yet more complicated
expressions for these moments have also been derived in [11].

An intuitive solution to the non-Gaussian problem of MAX
operator is to use a Gaussianp.d.f. to approximate the MAX
output distribution such that the first two moments of the
Gaussianp.d.f. match those derived by Clark. This approach
has been adopted in [6], [10]. Nonetheless, they fail to address
the issue of path correlations among delay elements.

A. Canonical Timing Model

[6], [7], [10] proposed acanonical delay model to address
the node delay correlations through sharing global variations.
In particular, they model each of the node delay as a summa-
tion of three terms:

ni = µi + αiRi +
∑
j=1

βi,jGj (5)

whereni(i = 1, 2, ...) are random variables corresponding to
the theith node delay in the timing graph;µi is the expected
value ofni; Ri, (namednode variation), is a zero-mean, unity
variance Gaussian random variable representing the localized
statistical uncertainties ofni; Gj represents thejth global
variation, and is also modeled as a zero-mean, unity variance
Gaussian random variable;{Ri} and {Gj} are additionally
assumed to be mutually independent; the weight parametersα i

(namednode sensitivity) and βi,j(namedglobal sensitivities)
are deterministic constants,explicitly expressing the amount of



dependence ofni on each of the corresponding independent
random variables.

With this canonical representation, the correlation (covari-
ance) between any two node delays,n i andnk, can be easily
evaluated.

cov(ni, nk) = E{(ni − µi)(nk − µk)} =
∑

j

βi,jβk,j (6)

Note that random variables{Ri, Rk, Gj(j = 1, 2, ...)} are
mutually independent.

B. Existing Method for Handling Correlations

Delay elements in a timing graph, including node delays
and edge delays, may become correlated due to sharing global
variations and/or common path histories. Multiple methods
handling one of these two types of correlations have been
proposed to get more accurate STA estimation.

In [6], [7], [10], the canonical timing model of Equation (5)
is directly applied into the edge delays in a timing graph. This
direct usage implicitly assumes that edge delay only depends
on global variations and no path correlation occurs in the
timing graph. This method will work well apparently only
when global variation dominates the correlations in the timing
graph but will have severe problem where path correlation is
important.

The authors in [6] propose the use oftightness to retain
global correlation information through the nonlinear MAX
operation. The global sensitivities of the output edge delay
from a MAX operation is treated as a tightness-based suppo-
sition of the global sensitivities of the input edges delays. This
method is valuable since it hints to use linear supposition as
the replacement of nonlinear MAX operation. But using the
intuitively defined tightness as the supposition coefficient is
not a suitable choice as revealed in section III.

In [9], a common node detection procedure is introduce to
deal with the path correlation. This method assumes that if
two edge delays,X andY , ever pass a common node whose
output edge delay isW , thenX = X ′+W andY = Y ′+W .
Operationmax(X, Y ) is then done asW + max(X ′ + Y ′).
This is not a good approximation sinceX and Y usually
don’t have such a strong dependence onW . A counter
example is illustrated in Figure 2 where bothX and Y are
theoretically dependent onW . But practically speaking,X
will be independent onW if U >> W and similarlyY will
be independent onW if V >> W .
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V

Fig. 2. Example to Fail Common Node Approach

To the best of our knowledge, existing STA methods have
yet to offer a solution to deal with the correlation problem

caused byboth global parameter variations and path reconver-
gence.

III. L INEAR MIXING APPROXIMATION OFMAX

In some of the current STA tools, the output of a MAX
operator is approximated by a Gaussian distribution with its
first two moments matching those derived by Clark (Equations
(3 and 4)). However, the resulting Gaussian distribution will
lose most of the correlation information between the input
edge delays.

In this paper, instead of generating the Gaussian distribution
at the MAX output directly, we propose to model the nonlinear
MAX operator with a weighted linear mixing operator. Clearly,
if inputs to the linear mixing operator are Gaussian distributed,
so well the output after the linear mixing operation.

More specifically, we choose the weights of the linear
mixing so that the first two moments of the resulting out-
put Gaussian distribution match those derived by Clark (cf.
equation (3 and 4)). While our method produces the same
approximated distribution at the output of a MAX operator,
the weighted linear mixing formulation makes it possible to
retain the correlation information using anextended canonical
timing model discussed in the next section. By preserving the
correlation information after the nonlinear MAX operators, the
accuracy of the STA can be significantly improved.

Theorem 1 (Max Linearization): Let X , Y and Z be
Gaussian random variables and that cov(X, Y ) = 0. If the
first two moments of Z match those of the random variable
max(X, Y ), then there must exist a constant, ρ, 0 < ρ < 1,
called the contribution factor, such that:

Z = ρ · X + (1 − ρ) · Y + ζ (7)

where ζ is an arbitrary constant.
Proof: Since random variableZ is a Gaussian approx-

imation of max(X, Y ), it will then be fully determined by
its first two moments given in Clark Equations If another
Gaussian random variableZ ′ = ρ ·X +(1−ρ) ·Y +ζ satisfies
the following two moment matching equations:

µZ = µZ′ = ρ · µX + (1 − ρ)µY + ζ (8)

σ2
Z = σ2

Z′ = ρ2σ2
X + (1 − ρ)2σ2

Y (9)

thenZ andZ ′ must be identical.
Solution to the mean matching Equation (8) will always

exist since it is only a linear equation. So the proof becomes
to guarantee real solutions for the quadratic variance matching
Equation (9). This is equivalent to confirm:

σ2
Z ≥ σ2

Xσ2
Y

σ2
X + σ2

Y

(10)

Using Clark’s equations (3 and 4), the above inequality (10)
is proved in Appendix I and solutions to Equation (9) will be:

ρ± =
σ2

Y

σ2
X + σ2

Y

±
√(

σ2
X

σ2
X + σ2

Y

)2

+
σ2

Z − σ2
X

σ2
X + σ2

Y

(11)



Also proved in Appendix II, ifσ2
Y ≥ σ2

X , 0 < ρ− < 1. If
σ2

Y < σ2
X , 0 < ρ+ < 1. So by switching the contribution fac-

tor ρ betweenρ− andρ+ according to the relative magnitude
of σ2

X andσ2
Y , 0 < ρ < 1 can always be guaranteed.

−8 −6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) p.d.f. of X andY

−4 −3 −2 −1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mont Carlo
Theorem

(b) p.d.f. of max(X, Y )

Fig. 3. Mont Carlo and Theorem Result Comparison

In Figure 3(a), thep.d.f.s of two independent Gaussian
random variables,X andY are shown in the left panel. The
p.d.f. from Monte Carlo method for a MAX operator and
its Gaussian approximation from the linear mixing operator
are shown to the right side panel. Clearly, the Gaussian
approximation is adequate to approximate the MAX operator.

Notice that the above theorem doesn’t guarantee the MAX
operation on twocorrelated Gaussian random variables can
also be approximated by a linear mixing operator. But this
limitation will not affect the applicability of the theorem in
STA. Correlated random variables modeling delay elements
in a circuit timing graph can always be decomposed into
independent delay elements according to Theorem 4 presented
in section IV-B. And MAX on these correlated delay elements
can be equivalent to a MAX on the decomposed delay ele-
ments followed by an ADD operator. Soonly MAX operation
on independent random variables is involved for the purpose
of STA.

IV. VARIATION VECTOR AND CORRELATION

DECOMPOSITION

The canonical timing model [6], [7], [10] is a powerful
tool to represent the numerous delay elements for a given
circuit. However, in its original format, it can only handle
node delay correlations caused by global variations. In this
work, we propose anextended canonical timing model that
is capable of captureall the correlation between any pair of
delay elements in the circuit be it a node delay or an edge
delay.

Theorem 2 (Extended Canonical Timing Model):
Assume that there are N nodes and M global variations in
the timing graph, if every node delay can be modeled by the
canonical format of Equation (5), then every delay element,
including all the node delays and edge delays will then have
a extended canonical timing model as:

X = µX +
N∑

i=1

αX,iRi +
M∑

j=1

βX,jGj (12)

Proof: Using the mathematical induction principle:

Assertion I: If X is a node delay, then it will automatically
have the extended canonical delay format because Equation
(5) is a subset of Equation (12) in that fork th node delay,
only oneαX,k has non-zero value while all otherαX,i�=k are
set to zero.

Assertion II: If X = A + B and delay elementsA, B
fit Equation (12) then X must have extended canonical delay
format.

Assertion III: If X = max(A, B) given that delay elements
A, B fit Equation (12), Theorem 4 guarantees thatA = A ′ +
W , B = B′ + W , cov(A′, B′) = 0 andA′, B′, W will also
fit Equation (12). SoX = max(A, B) = max(A′ + W, B′ +
W ) = W +max(A′, B′) = W +ρA′+(1−ρ)B′+ζ according
to Theorem 1. SoX will have delay format of Equation (12).

Any delay element, if it is not a node delay, can ultimately
be expressed as the result of one or multiple steps of ADD
and/or MAX operations from node delays. So based on the
above three assertions, the mathematical induction principle
guarantees that all delay elements will have the extended
canonical format of Equation (12).

A. Variation Vector

The extended canonical format of Equation (12) can be
rewritten in a compacted vector format as

X = µX + xT b (13)

where
b ≡ [R1, · · · , RN , G1, · · · , GM ]T

is a random vector consisting of zero-mean, unity variance
independent Gaussian random variables and

x ≡ [αX,1, · · · , αX,N , βX,1, · · · , βX,M ]T

is a deterministic vector and is theVariation Vector(v.v.) of X .
So Each delay element(X) in a circuit will be uniquely

represented by its mean(µX) and variation vector(x), noted as

X = X(µX , x) (14)

With equation (12), both global and path correlations can
be handled elegantly. More specifically, global variations are
represented by the set of global sensitivity terms{βX,j}, and
dependence on path history are represented by non-zero node
sensitivity termsαX,k.

From definition, it is easy to verify the following properties
for variation vector:

Theorem 3: Assuming k and c are constants and x, y, z
are variation vectors of delay elements X , Y , Z .

(1) X and X + c have the same variation vector of x;
(2) If Z = X + Y then z = x + y;
(3) If Z = kX , then z = kx.
(4) σ2

X = xT · x = ||x||
(5) cov(X, Y ) = xT · y = yT · x

Property (1) indicates that variation vector remains un-
changed if a constant is added to the corresponding random
variable since variation vector contains only the variance infor-
mation of the random variable while the added constant only



affects the mean of the random variable. Properties (2) and (3)
are the basis of variation vector propagation discussed later.
Properties (4) and (5) make variation vector an convenient and
systematic way to evaluate the variances and correlations for
any delay elements.

B. Correlation Decomposition

Due to simplicity of handling independent delay elements,
it is usually desirable to decompose correlated delay elements
into independent ones. A typical method is to to use so called
Principle Component Analysis(PCA). [12]

However, MAX operation isnot communicative with gen-
eral linear transformation operators (U ):

max{U(X, Y )} �= U(max{X, Y })
so little benefit can be obtained by applying it to calculate the
MAX output for two correlated delay elements.

Based on the canonical timing model of delay elements,
there exists a much more elegant way to decompose two
correlated delay elements:

Theorem 4 (Correlation Decomposition): Let delay ele-
ments X and Y in a circuit be represented in the extended
canonical delay model representation. If X and Y are cor-
related, then there will be a third delay element W also in
the extended canonical delay model representation such that
cov(X − W, Y − W ) = 0.

Proof: Assume variation vectors ofX and Y are x =
(x1, x2, · · · , xN+M )T andy = (y1, y2, · · · , yN+M )T , then a
new variation vector ofw = (w1, w2, · · · , wN+M )T can be
constructed as:

wi = min(xi, yi) i = 1, 2, · · · , N + M (15)

This construction procedure is illustrated in Figure 4
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Fig. 4. Correlation Decomposition Procedure

So if a random variableW is defined asW = W (µW , w)
with arbitrary mean value ofµW , thencov(X−W, Y −W ) =
(x − w)T (y − w) = 0 since it is impossible for(x − w)
and (y − w) to have common non-zero components in their
variation vectors.

With this method of correlation decomposition, correlated
delay elementsX andY are decomposed intoX ′, Y ′ andW
as X = X ′ + W and Y = Y ′ + W and cov(X ′, Y ′) = 0.
What is more interesting is that this decomposition procedure
is communicative with the MAX operation:

max(X ′ + W, Y ′ + W ) = W + max(X ′, Y ′)

So all MAX operations on dependent delay elements can be
simplified as a MAX operation on independent delay elements
followed by an ADD operation and so that the computation
will be greatly simplified.

V. PROPAGATING MEAN AND VARIATION VECTOR

In a timing graph, the mean and variation vector of a
node delay is obtained from technology extraction. To get
orthogonality required by the mean andv.v. representation
of delay elements, Principle Component Analysis may be
conducted after extraction.( [10]) But this is done only once
for a specific technology and so that is not considered as a
part of STA. A STA algorithm, instead, will take those node’s
means and variation vectors as its input and calculate edge’s
mean and variation vector in the entire circuit.

A. Algorithm for ADD and MAX Operations

Through an ADD operation

Z(µZ , z) = X(µX , x) + Y (µY , y)

the mean andv.v. propagation is straightforward:

µZ = µX + µY (16)

z = x + y (17)

It is very easy to verify the consistency between this variation
vector approach and Equation (2).
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Decompose

Fig. 5. Z = max(X, Y ) whencov(X, Y ) �= 0

The mean and variation vector propagation through MAX
operation,

Z(µZ , z) = max{X(µX , x), Y (µY , y)}
is illustrated in Figure 5 where totally four computation steps
are involved:
(1) Correlation Decomposition

X(µX , x) = X ′(µX′ , x′) + W (µW , w)
Y (µY , y) = Y ′(µY ′ , y′) + W (µW , w)

wherecov(X ′, Y ′) = x′T · y′ = 0
(2) CalculateµZ′ andσZ′ for Z ′ = max(X ′, Y ′) from Clark

Equations (3 and 4)
(3) Calculate contribution factorρ for Z ′ = max(X ′, Y ′)

from Equation (11) of MAX linearization Theorem.
(4) Final Results forZ = max(X, Y )

µZ = µZ′ + µW (18)

z = ρx′ + (1 − ρ)y′ + w (19)

If there are more than two delay elements involved in the
MAX operation, then MAX is done iteratively by MAX two
delay elements at each iteration.



B. Exploration of Sparsity

Since there areN nodes in a timing graph, and each
node delay as well as corresponding edge delay will have a
N+M dimensional variation vector, the total computation and
storage required will beO(N(N + M)) ≈ O(N 2). However,
while working with benchmark circuits, we noticed that many
components in the variation vector have very small values,
indicating that their contributions to the overall correlation
evaluation is insignificant. By setting these small coefficient
to zero, the variation vector will become a sparse vector that
contains many zero components.

Motivated by this observation, we developed a novel tech-
nique called theflexible vector format to exploit the sparsity
of the variation vector. In particular, we focus on curtailing
node part of the variation vector,αX,i, that have small values.
For this purpose, adrop threshold is selected so that ifαX,i is
smaller than this threshold, it is deemed to have small value
and will be placed into a drop candidate pool to be pruned
from the variation vector representation.

However, droppingαX,i with small magnitude is the same
as applying truncation to the variation vector. In subsequent
computations, the quantization error may accumulate, caus-
ing non-negligible error. This is a problem that can not be
overlooked for large circuits. Our solution to this problem is
to lump those components in the drop candidate pool into a
single correction term

xpool =
√∑

x2
dropped Components (20)

When two variation vectors merge through either ADD or
MAX operation, their pooling components are assumed to be
independent. Hence,

zpool(ADD) =
√

x2
pool + y2

pool (21)

zpool(MAX) =
√

ρ2x2
pool + (1 − ρ)2y2

pool (22)

C. Complexity and Path Correlation Length

Using this drop and pool mechanism, what is really dropped
during computation is then the path correlation. So the length
of the variation vector actually gives a good indication to the
extent of path correlation in the circuit. Thepath correlation
length(Γ) of the circuit is then defined to be the average length
of node part of the pruned variation vectors for a given drop
threshold.

With this notation, the computation complexity can be
reduced fromO(N 2) down to O[(Γ + M) · N ]. Simulation
results indicated thatΓ << N and is not a function ofN .
Hence it represents a significant reduction of computation and
storage.

VI. SIMULATION RESULTS AND DISCUSSIONS

The above described algorithm has already been imple-
mented in C/C++ with name ofAMECT and tested by
ISCAS85 benchmark circuits.

Before testing, however, all benchmark circuits are re-
mapped into a library which has gates ofnot, nand2, nand3,

nor2, nor3 and xor/xnor. Table I summarizes the gate count
for each test circuit after gate re-mapping.

TABLE I

ISCAS85 BENCHMARK CIRCUITS

Name c432 c499 c880 c1335 c1908
Gate Counts 280 373 641 717 1188

Name c2670 c3540 c5315 c6288 c7552
Gate Counts 2004 2485 3865 2704 5355

All library gates are implemented in0.18µm technology
and their delays are characterized by Monte Carlo simulation
with Cadence tools assuming all variation sources, either
process variations or operational variations, follow Gaussian
distribution.

For illustration purpose, only three parameter variation are
considered global: channel length(L), supply voltage(Vdd)
and temperature(T). All other variation sources, specified in
the 0.18µm technology file, are assumed to be localized in
the considered gate only. Also we don’t address the spatial
dependency of the gate delays just for demonstration purpose.
In real life, gate timing parameters are position dependent and
our method is still applicable.

A. Accuracy and Performance

Monte Carlo simulation results with 10,000 repetitions are
used as “Golden Value” for each benchmark circuit. Each
repetition is a process of static timing analysis by fixing global
and node variation into a set of randomly sampled values. The
global variations are sampled once for each repetition while
node variation for each gate is newly sampled every time when
the gate is computed.

Table II summarizes the edge delay distribution parameters
at the primary output of each testing circuit from Monte
Carlo(M.C.) and two flavors of STA methods usingAMECT.
For comparison purpose, a fourth STA methodNoCorr with
no correlation considered is also implemented and simulated.
µ andσ are mean and standard variation of the distribution.
τ97 = µ + 2σ is the delay estimation at confidence level of
97%. The accuracy of STA methods compared with Monte
Carlo method, is evaluated in Table III.

The drop threshold inAMECT will determine the extent at
which the path correlation is considered. MethodHighAccu is
the high accuracy version ofAMECT when drop threshold is
set into1% and most path correlations are considered while
methodHighPerf is the high performance version ofAMECT
with drop threshold of100% and only global correlation is
considered.

From Table III, it is very clear that methodNoCorr fails
to give reasonable variance estimation because no correlation
is considered which gives a good example for the importance
of correlations in STA. It is also notable thatNoCorr can
still have fairy reasonable mean estimation which tells that
the mean delay is not so sensitive to the correlation. This
interesting phenomenon may come from the ADD operation
whose variance is very sensitive to the input correlation.



TABLE II

TESTINGRESULTS FORISCAS BENCHMARKS

STA CPU Delay Distribution[ps]
Circuit Method Time[s] µ σ τ97

M.C. 6.449 1288.8 219.3 1727.5
c432 HighAccu 0.030 1299.0 220.4 1739.9

HighPerf 0.010 1348.6 216.0 1780.7
NoCorr 0.000 1392.6 22.3 1437.1
M.C. 8.182 1073.6 178.9 1431.4

c499 HighAccu 0.030 1084.8 180.5 1445.8
HighPerf 0.010 1125.4 178.3 1482.0
NoCorr 0.000 1148.6 20.5 1189.5
M.C. 14.831 1445.4 266.3 1977.9

c880 HighAccu 0.050 1447.6 264.9 1977.3
HighPerf 0.010 1463.1 264.2 1911.5
NoCorr 0.010 1471.6 16.5 1504.5
M.C. 19.007 1445.4 251.4 1948.3

c1355 HighAccu 0.071 1460.9 250.7 1962.3
HighPerf 0.010 1529.4 249.0 2027.4
NoCorr 0.000 1536.8 12.5 1561.8
M.C. 35.801 1828.2 327.3 2482.8

c1908 HighAccu 0.150 1841.9 328.4 2498.6
HighPerf 0.030 1881.7 326.5 2534.7
NoCorr 0.010 1895.1 27.0 1949.2
M.C. 72.163 2097.0 382.9 2862.8

c2670 HighAccu 0.181 2104.4 382.9 2870.1
HighPerf 0.050 2161.8 379.7 2921.2
NoCorr 0.020 2193.1 22.0 2237.1
M.C. 84.020 2747.2 498.8 3744.8

c3540 HighAccu 0.240 2752.3 502.1 3756.5
HighPerf 0.050 2850.3 500.6 3851.5
NoCorr 0.020 2859.7 23.4 2906.5
M.C. 140.832 2399.3 441.7 3282.6

c5315 HighAccu 0.641 2404.8 442.2 3289.2
HighPerf 0.080 2474.1 441.3 3356.7
NoCorr 0.040 2544.8 31.7 2608.2
M.C. 114.235 6740.1 1286.8 9313.6

c6288 HighAccu 5.198 6775.9 1275.1 9326.2
HighPerf 0.070 7290.8 1273.1 9836.9
NoCorr 0.030 7325.1 14.9 7355.0
M.C. 202.972 1911.7 348.7 2609.0

c7552 HighAccu 0.571 1916.6 353.8 2624.2
HighPerf 0.110 1974.3 352.5 2679.3
NoCorr 0.050 2027.4 26.3 2080.1

Table III also shows thatHighPerf have significantly larger
error in mean estimation thanHighAccu. This is reasonable
becauseHighAccu will overestimate the mean at every MAX
operation due to smaller correlation considered and this over
estimation is accumulated through distribution propagation.
It is also interesting to notice thatHighPerf and HighAccu
give similar accuracy in variance estimation. This is possibly
because of the fact that the variance is dominated by global
variation in the tested cases.

Of course, Monte Carlo simulation gives the best STA
results but with big runtime penalty.AMECT runs order-
of-magnitude faster but can provide both mean and variance
estimation almost as accurate as Monte Carlo does if most of
the path correlations are considered as the cases ofHighAccu
shown in Table II and III. If the accuracy on mean estimation
can be relaxed, then the drop threshold can be higher and
AMECT will give some mean overestimation but with better
performance in runtime. In another word,AMECT is param-
eterized by the drop threshold and can be used to trade-off

TABLE III

DISTRIBUTION ERRORRESPECTING TOMONTE CARLO RESULTS

Circuit Mean Error(δµ) Variance Error(δσ)
HighAccu HighPerf NoCorr HighAccu HighPerf NoCorr

c432 0.79% 4.64% 8.05% 0.50% 1.50% 89.8%
c499 1.04% 4.82% 6.99% 0.89% 0.34% 88.5%
c880 0.15% 1.22% 1.81% 0.53% 0.79% 93.8%
c1355 1.07% 5.81% 6.32% 0.28% 0.95% 95.0%
c1908 0.75% 2.93% 3.66% 0.27% 0.24% 91.8%
c2670 0.35% 3.09% 4.58% 0.00% 0.84% 94.3%
c3540 0.19% 3.75% 4.10% 0.66% 0.36% 95.3%
c5315 0.23% 3.12% 6.06% 0.11% 0.09% 92.8%
c6288 0.53% 8.17% 8.68% 0.65% 1.06% 98.8%
c7552 0.25% 3.27% 6.05% 1.46% 1.09% 92.5%

accuracy with performance in some circumstances.
To further elaborate the accuracy ofAMECT, Figure 6

shows thep.d.f. and c.d.f. for circuit c6288 from three
methods: Mont Carlo and two methods ofAMECT(HighAccu
andHighPerf). Apparently enough,AMECT shows excellent
accuracy if most path correlation is considered as in method
HighAccu.
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Fig. 6. p.d.f. andc.d.f. comparison for c6288 from three methods

TABLE IV

PATH CORRELATION LENGTH AT 1% OF DROPTHRESHOLD

Name c432 c499 c880 c1335 c1908
Γ 22.0 11.1 14.2 19.3 27.0

Name c2670 c3540 c5315 c6288 c7552
Γ 15.4 21.2 14.4 80.9 16.0

B. Path Correlation Length

It has been mentioned in Section V-C that path correlation
length (Γ) provided by AMECT is an interesting macro
property of the simulated circuit and gives a good indication
of the extent of the path correlation existing in that circuit.
For the above ISCAS circuits, the path correlation length(Γ)
at drop threshold of1% is summarized in Table IV.

From Tale IV, we can firstly conclude that the correlation
length Γ is much smaller than the circuit size and basically
independent on the circuit size since it remains about10− 20
when circuit size changes dramatically. This observation helps
the conclusion we made before about the complexity reduction
of AMECT by using the technique of flexible vector format.

Secondly, the only exceptional high path correlation length
among the tested circuits happens with the circuit c6288
which is known as a 16-bit array multiplier. Since there
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(c) Verifying 0 < ρ+ < 1

Fig. 7. Numerical Results for Appendix I and II

are large amount of equal delay paths in the circuit, large
path correlation length is natural: Few node variation can be
dropped due to the equal importance.

VII. C ONCLUSIONS

This paper presents a novel method for block-based statisti-
cal timing analysis. Applying the generally accepted Gaussian
assumption, we firstly disclose that the MAX operation can
be approximated by linear supposition of its inputs. Secondly
we extend the commonly used canonical timing model into a
vectorized format, variation vector. We also disclose a novel
method to decompose correlated timing variables into inde-
pendent ones to simplify computation. With these theoretical
progress, we are able to evaluate and propagate the global and
path correlation systematically in the circuit timing graph.

We also design a novel algorithm,AMECT which treat both
global and path correlation simultaneously and systematically.
This algorithm, with the help with a new flexible vector format
achieves high accuracy and high performance at the same time
as tested by ISCAS circuits and compared with Monte Carlo
“golden value”.

APPENDIX I
EXISTENCE OFCONTRIBUTION FACTOR

Clearly, max(X + c, Y + c) = c + max(X, Y ) and
max(kX, kY ) = k ·max(X, Y ) for any constantk > 0 andc.
So the variance matching Equation (9) will not change ifX ,
Y and Z are shifted and positively scaled at the same time.
So the solution ofρ to the scaled and/or shifted equation will
also be the solution to the original one. So no generality will
lose if we additionally assumeµX = µ, µY = 0, σ2

X = σ2,
andσ2

Y = 1.
Applying results from Equations (3 and 4),E(Z) = µQ +

θP , E(Z2) = (µ2 + σ2 − 1)Q + µθP + 1, θ2 = 1 + σ2 and
λ = µ/θ, It is then sufficient to prove the inequality (10) if:

D(λ) = A − Q2 ≥ 0 (23)

whereA = (1 + λ2 − 2λP )Q + (λ − P )P − λ2Q2.
SinceD(λ) is only a function ofλ, numerical evaluation in

Figure 7(a) shows that it is always positive. So the inequality
(10) is proved and the existence of the contribution factor is
guaranteed.

APPENDIX II
BOUNDING THE CONTRIBUTION FACTOR

After scaling and shifting described in Appendix I, the root
ρ will have the form of:

ρ± =
1
θ2

[1 ±
√

1 − 2Qθ2 + Aθ4] (24)

If σ2
Y ≥ σ2

X , then1 < θ2 ≤ 2 and0 < ρ− < 1 as shown
in Figure 7(b). Similarly, ifσ2

Y < σ2
X , thenθ2 > 2 and0 <

ρ+ < 1 as shown in Figure 7(c).
So by switching the contribution factorρ betweenρ− and

ρ+ according to the relative magnitude ofσ 2
X and σ2

Y , 0 <
ρ < 1 can always be satisfied.
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