
A ROBDD-Based Generalized Nodal Control Scheme for Standby
Leakage Power Reduction

Hsinwei Chou Charlie Chung-Ping Chen

Dept. of Electrical and Computer Engineering Department of Electrical Engineering
University of Wisconsin-Madison National Taiwan University

Madison, WI 53706 Taipei, 106, Taiwan
hsinweichou@wisc.edu cchen@cc.ee.ntu.edu.tw

Abstract— We present in this paper the method of

Generalized Nodal Control for standby leakage power

reduction. First, a sparse set of input and inter-

nal nodes to control are identified using a novel al-

gorithm based on Reduced Ordered Binary Decision

Diagrams (ROBDDs) and Fiduccia-Mattheyses Parti-

tioning. Then, customized control gates with ”forced”

transistor stacks are inserted at these select locations

to achieve effective subthreshold leakage control with

minimal overhead addition. Compared to the method

of input assignment, our technique is more generalized

and more effective, especially on large circuits with high

logic depths. We implemented our algorithm in C and

tested it on several ISCAS85 and MCNC91 benchmark

circuits. Experimental results show an average of 29%

standby leakage power reduction and a worst runtime

of 3 minutes only.

I. Introduction

As CMOS scales into nanometer technology, the im-
portance of standby leakage power reduction, especially
for portable devices, cannot be underestimated. In
past works, several leakage reduction methods have been
proposed, such as dual Vt[1], MTCMOS[2], and input
assignment[3][4][5][6]. Each technique has its share of
strengths and drawbacks, and in this work we are con-
cerned only with the last approach, input assignment. The
key idea behind input assignment is to explicitly control
the input nodes’ values during STATIC or standby mode
operation so that the target circuit is placed into a ‘leakage-
optimal state’ during the entire time that it idles. We will
elaborate more on this in Section II. Note that this tech-
nique only works for combinational circuits, since the in-
ternal nodes’ values get overwritten whenever a new input
vector is applied.

Compared to other leakage reduction methods like dual
Vt and MTCMOS, the main appeal behind input assign-
ment lies in its low overhead, as the only penalty incurred
in using this technique comes from the additional hardware
needed for input pin control (which can be as simple as
AND/OR gates or latches/muxes). In addition, the num-
ber of inputs to a circuit is typically limited, which further
alleviates the overhead penalty. The disadvantage of input

assignment is that as a circuit’s size gets larger and larger,
the effectiveness of input assignment tends to degrade. This
is because having more gates in a circuit increases the num-
ber of variables (the leakage states of the individual gates)
to optimize for, which in turn makes the finding of the op-
timal input vector more difficult. Clearly, this is a strong
drawback to input assignment, as designs are constantly
getting bigger with technology scaling.

In light of the inefficiency of input assignment in large
circuits, we propose in this work a new method for leakage
power reduction called Generalized Nodal Control, where
the idea is to allow any node in the circuit to be control-
lable, regardless of whether it’s an input node or an in-
ternal node. In this manner, the points of control within
a circuit can be distributed more evenly for finer leakage
management. However, the key difficulty involved is how
to decide which and how many nodes to control such that
a satisfactory amount of leakage reduction can be attained
without adding too much overhead penalty. As we will
show in Section III, it turns out that a good answer to
this question can be found by taking a divide-and-conquer
approach and using Reduced Ordered Binary Decision Di-
agrams (ROBDDs)[10] to solve the optimal input vector
identification problem. However, before we elaborate on the
details of our technique, we first provide some background
information in Section II on input assignment. Then, after
developing the main Generalized Nodal Control scheme in
Section III, we present some experimental results in Section
IV, followed by concluding remarks in Section V.

II. Background

In general, the leakage current within a transistor is com-
prised of several components like subthreshold leakage, gate
tunneling leakage, reverse-biased pn junction leakage, etc.
For a more detailed analysis, we refer the readers to[7]. For
this paper, only a high-level view is needed, which is the
following observation: due to the way the transistors are
stacked on top of each other in CMOS standard cells, an im-
portant phenomenon known as the stacking effect[8] causes
a CMOS gate’s subthreshold leakage power consumption to
be sensitive to its input combination value. For example,
the leakage characteristics for several basic CMOS cells are
tabulated in Table I. As it can be seen, ileak can vary non-



TABLE I
Leakage current (e-9) corresponding to different input

combinations (70nm technology, TOX=12nm, 110◦ C)

INPUTS NAND2 NAND3 NAND4 NOR2 NOR3 NOR4
0000 151 85 58 1293 1929 2552
0001 644 151 85 270 256 248
0010 513 152 85 386 267 253
0011 784 639 151 57 54 53
0100 147 85 381 265
0101 510 151 57 54
0110 496 151 56 54
0111 1174 634 29 29
1000 83 375
1001 144 57
1010 145 56
1011 507 29
1100 143 56
1101 493 29
1110 486 29
1111 1562 20

trivially between different input patterns. In general, the
leakage power consumption of any simple CMOS gate dif-
fers with respect to different input combinations, and thus
a CMOS circuit as a whole is input vector-dependent for
its leakage power consumption. Hence, as was discussed
earlier, input assignment involves pre-determining a set of
input values which is optimal (in the leakage power sense)
for a given target circuit and inserting special hardware
to force these values to be applied automatically during
STATIC mode. Unfortunately, the problem of finding the
‘best’ input vector is known to be NP-complete. Neverthe-
less, several heuristics for solving this problem have been
proposed in recent works[5][6][12][13].

III. Generalized Nodal Control

We now present our algorithm for Generalized Nodal
Control. To be able to achieve satisfactory leakage con-
trol without incurring too much overhead penalty, we must
not only identify a good set of nodes to control, but also
minimize the total number of elements in that set. Since
there exists 2n (n = # of nodes) total possible subsets of
nodes in a circuit, we can clearly not enumerate all possible
ways to control the nodes to find the best choice. Instead,
we need a reasonably good approximation heuristic to do
this, and to this endeavor we propose a strategy based on
divide-and-conquer with ‘multiple’ input assignments. Our
method is an intuitive extension of input assignment and
works as follows: given a target circuit whose size may be
too large for effective input vector control, we first partition
the circuit into as many sub-circuits as it takes to achieve
decent leakage control on each sub-circuit, then optimally
and independently identify an input vector for each sub-
circuit as if they were separate entities. Finally, we add in
some nodal-control hardware at selective locations where
cuts occurred so that all of the pre-determined input vec-
tors for each sub-circuit can be properly enforced during
STATIC mode. In doing this, we have now extended the
points of control from input-only to inputs and internal
nodes as well (since the inputs to a sub-circuit can come
from either an actual primary input or an internal node
belonging to the cut set formed from partitioning).

By allowing input assignment to be applied indepen-
dently on each smaller sub-circuit, our Generalized Nodal
Control scheme is guaranteed to achieve leakage control
at least as good as that of the original input assignment
method, if not better. However, one can easily imagine
that when the number of partitions get too large, inserting
nodal-control hardware at every node in the cut set can
be costly on overhead penalty. Fortunately, there is a way
to get around this problem, and it involves noticing a key
trend present in the data shown in Table I. Observe that
for all of the gates shown, ileak can vary substantially be-
tween some input combinations and yet trivially between
others. For example, in the NAND4 case, the subthresh-
old leakage values for input combinations ‘0000’ and ‘0100’
are approximately equal, relatively speaking. Because of
this, we can say without loss of generality that if a NAND4
gate sees an input combination of ‘0X00’, where X is a
‘don’t care’, then its leakage current will be approximately
equal to some value, say the average between ‘0000’ and
‘0100’. By exploiting the natural existence of ‘don’t care’
variables between similar leakage input combinations, we
can significantly reduce the number of input nodes needed
to be controlled for optimal input assignment in each of the
sub-circuits. We call this idea ‘partial’ input vector control
to distinguish it from the standard input assignment ap-
proach, where all input values are explicitly controlled to
achieve the absolute-best possible leakage state (even if it
means sacrificing some overhead in adding an additional
node to control in exchange for minor savings in leakage
power consumption). To the best of our knowledge, all
heuristics proposed to-date for optimal input vector iden-
tification have been concerned only with full input vector
assignment. As such, they were not suitable for this work
and we needed to develop a new method to determine the
optimal input vector such that the concept of ‘partial’ in-
put control can be realized. For this, we turn to ROBDDs,
an idea that will be elaborated in Section III-B.

The following sub-sections describe the main General-
ized Nodal Control scheme, which is divided into three key
phases: partitioning, partial input vector identification, and
merging.

A. First Phase: Partitioning

Given a target circuit, we first partition it into as many
sub-circuits as we desire using a classical partitioning al-
gorithm in Multilevel Fiducia-Metheyes (MLFM)[9]. In
MLFM, balanced partitions are sought using as few cuts as
possible. This goal matches favorably with our technique,
since by maintaining a size balance amongst the different
partitions, each resulting sub-circuit will be equally likely to
be tractable. Furthermore, the fewer the cuts, the lesser the
number of internal nodes that need to be controlled in the
end, and therefore the smaller the overhead penalty. The
number of ways to partition the circuit is chosen based on
the size of the initial circuit and on the desired level of leak-
age control by the user. In general, more partitions result in
finer leakage management, but also generate a greater over-
head at the end. It is up to the user to make the tradeoff



between leakage power reduction and overhead penalty.

B. Second Phase: Partial Input Vector Identification

Once partitioning is complete, the next step is to inde-
pendently identify a low-leakage partial input vector for
each partition. To do so, every basic CMOS gate contained
in the cell library must have its leakage-input relation pre-
characterized via SPICE like that shown in Table I. This is
necessary to introduce leakage ‘tiers’ for each gate type. A
leakage tier is defined as a small and distinct range of leak-
age values. For example, using Table I, a NAND3 can be
characterized to have 3 tiers: one with {’000’, ’001’, ’010’,
’100’}, another with {’011’, ’101’, ’110’}, and the last be-
ing {’111’}. An important point to note is that for certain
types of gates like inverters and XORs/XNORs, only one
leakage tier is exhibited. For these cells, it just means that
their leakage power consumption is not affected by their
input combination value, and hence a method for finding a
minimal-leakage input vector need not directly take these
gates into account.

The way in which a tier is defined or grouped affects how
partial the end-resulting input vector will be. The looser
the grouping(fewer total leakage tiers for that particular
gate type), the more partial the result will be, since more
‘don’t care’ variables can surface. However, a looser group-
ing translates to a solution which is inferior in accuracy of
leakage control to a solution which is found using a tighter
grouping. It is up to the user again to pick the tradeoff
point in accuracy vs. partiality. If the number of ways
a circuit was partitioned was large, then it makes sense to
group looser to incur less overhead. However, if only a small
number of partitions were used, then one should probably
group tighter to exercise better leakage control. For this
work, we found that 2 to 3 leakage tiers sufficed for all of
the standard cells used.

After characterizing the leakage tiers for every cell, the
next step is to introduce a ‘LeakageClause’ for every gate
that has more than one total leakage tier. These gates rep-
resent those in the circuit whose leakage value varies non-
trivially between different input combinations, and thus can
actually benefit from input control. The LeakageClause
models the leakage-input dependence of a gate and is formu-
lated as follows: Suppose that gatei was pre-characterized
to have N leakage tiers, Ti

1, Ti
2,... Ti

N . Let the following
notation combj

i be used to denote an input combination
that corresponds to leakage tier Ti, with j being just an
index to distinguish between different combinations of the
same leakage tier (i.e., comb1

1, comb2
1, and comb3

1 are all
input combinations that result in T1). Then, the general
form of a LeakageClausei can be written as follows (note
that ”+” is the Boolean OR operation):

LeakageClausei =[
comb1

1 + comb2
1 + ... + combj

1

]
(T i

1)(T i
2)...(T

i
N ) +

[
comb1

2 + comb2
2 + ... + combj

2

]
(T i

1)(T
i
2)...(T i

N ) +
...[

comb1
N + comb2

N + ... + combj
N

]
(T i

1)(T
i
2)...(T

i
N ) (1)

A

B

NAND3
Gate2

X

C

Inv
Gate1

Fig. 1. Example Circuit

An important thing to note is that in a LeakageClause, the
input combination expressions combj

i are formed from the
previous gates’ logic functions, which are recursively ex-
pressed down to only the input variables. This is done to
avoid the introduction of internal node variables while for-
mulating the LeakageClause. For example, LeakageClause2

for the circuit shown in Figure 1 is written as follows (as-
suming the same NAND3 tier characterization as earlier):

LeakageClause2 =[
(A)(B)(C) + (A)(B)(C) + (A)(B)(C) + (A)(B)(C)

]

(T 2
1 )(T 2

2 )(T 2
3 ) +[

(A)(B)(C) + (A)(B)(C) + (A)(B)(C)
]

(T 2
1 )(T 2

2 )(T 2
3 ) +[

(A)(B)(C)
]
(T 2

1 )(T 2
2 )(T 2

3 )

Observe that in the above equation, the first input to the
NAND3, node X, is implicitly replaced with (A) in the input
combination expressions.

After deriving the LeakageClause for every gate with
more than one leakage tier, the next step is to AND them all
together to form a conjunction called the CircuitLeakage.

CircuitLeakage = Πn
i=1(LeakageClausei) (2)

It is important to realize that the CircuitLeakage equation
is always satisfiable because for any particular input vector
assignment, the values for the leakage tier variables, Ti

js,
can be arbitrarily set to match the actual resulting tier
states for the corresponding gates in the circuit under that
input vector.

Once CircuitLeakage is derived for the target circuit, a
‘weighted’ ROBDD[10], which we will call the FinalBDD,
can then be constructed to model the CircuitLeakage equa-
tion. It is important to note that arc weights are not tradi-
tionally present in ROBDDs, so this is a minor variation of
the standard data structure. The weights are assigned to
the arcs of FinalBDD as follows: For those nodes associated
with the primary inputs, both their THEN and ELSE arcs
are arbitrarily assigned a small and non-zero value. The
non-zero property on these weights is very important for
partial input vector identification and will be explained in
more details soon. For the leakage tier nodes Ti

js, their
ELSE arcs all have a weight of 0 while their THEN arcs
have a weight that is proportional to the leakage value rep-
resented by that tier. If a leakage tier is associated with
more than one input combination, then its THEN arc’s



A

B

C C

T1
2

T
3

2 T
3

2

B

T1
2 T1

2

T2
2 T2

2 T2
2

1 0

30 30

30
30

30
30

30
30

30 30

134
134 1340

0 0

548
548548

0
0

0

1174
1174

00

Fig. 2. FinalBDD for Figure 1. Solid lines=THEN, dashed=ELSE

weight is computed as the average of those input combi-
nations’ resulting leakage values. For example, suppose we
are dealing with a NAND3 gate. Then, using the same
NAND3 leakage tier characterization as earlier, we would
assign its T1 node’s THEN arc a weight of 134, which is
the average between 85(’000’), 151(’001’), 152(’010’), and
147(’100’). Similarly, its T3’s THEN arc would have a
weight of 1174(’111’). As an illustration, Figure 2 shows
the FinalBDD for the circuit of Figure 1.

After constructing FinalBDD, we now have a Directed
Acyclic Graph (DAG). From the FinalBDD DAG, a low-
leakage partial input vector can be determined by tracing
the shortest path from root to the logic-TRUE node (the ‘1’
node on the bottom), where shortest is defined as min(Σ all
arc weights in path) for all possible paths to TRUE. That
is, finding an optimal partial input vector is equivalent to
solving the shortest path problem in FinalBDD. Through
this path, by examining which of the arcs (THEN or ELSE)
are taken from the input nodes, the values to control the
different input signals can be determined. Furthermore,
those inputs which do not need to be controlled can be
identified and left alone in the final design. For example, in
Figure 2, the shortest path is (A)(B)(T2

1)(T2
2
)(T3

2
), so the

optimal-leakage partial input vector is simply AB = {10}.
Notice that input C is not included in the solution because
regardless of what C’s value is, as long as AB = {10}, the
leakage state of this circuit will be considered ‘low enough’
by the way we defined the leakage tiers.

At this point, one may wonder why we chose to use a
ROBDD as our graph data structure for CircuitLeakage
when it appears that just a simple binary tree would suf-
fice for the method described. There are actually two main
reasons for this. First, the number of nodes in the graph
is exponential with respect to the number of gates in the
circuit, due to the fact that each gate introduces multiple
leakage tier nodes. Hence, if a regular binary tree were

used, the size of the graph can easily explode out of con-
trol. Fortunately, the ROBDD data structure is an actively
researched topic and past works have led to an attractive
mechanism called dynamic variable reordering[11] which
can significantly compress the size of a ROBDD (hence the
label ‘Reduced’). This is the first main reason behind the
choice of ROBDD. Second, although it’s not shown in the
example graph of Figure 2, there are times when even the
shortest path solution can be sub-optimal in the sense that
even though the controlled leakage state may be low, the
number of inputs required to be controlled may not be ab-
solutely minimized. This is because depending on the way
the node variables are ordered in the graph from top to
bottom, a path from root to TRUE can sometimes unnec-
essarily traverse 1 or more input node(s). For instance,
in the ROBDD of Figure 2, node A is the first node from
root, so it must be traversed no matter what. However,
it is possible that if the tree had a different node ordering
where A is not the first node from the root, then we could
potentially bypass A in tracing a shortest path to TRUE.
Therefore, the order of the nodes can play a large role in de-
termining how ‘partial’ our final input vector gets. Hence, a
fixed-order, static binary tree would not be judicious to use,
and the dynamic variable reordering mechanism of ROB-
DDs again comes into play. From methods like Rudell’s
sifting algorithm to Fujita’s window algorithm (see [14]),
many different ways to dynamically reordering a ROBDD
can be tried until we pick out the best and most ‘partial’
input vector solution.

Recall that we previously said that the arc weights of the
input variable nodes should be small but non-zero. The
reason for this is that in assigning small weights to the in-
put nodes (with respect to the weights on the tier state
nodes), we can allow a shortest path finding procedure like
Dijkstra’s Algorithm to prioritize for leakage reduction over
the minimization of the number of input nodes to control.
This is because the weights on the tier state nodes will dom-
inate those on the input variables’ arcs during the process
of determining the shortest path. However, because the
weights of the input nodes are non-zero, it will still allow
the number of input nodes traversed in the final solution
to be minimized in the end, as long as the ending leakage
state remains unchanged.

The entire partial input vector identification process us-
ing ROBDDs is now summarized in Algorithm 1.

C. Third Phase: Merging

After we have identified a low-leakage partial input vec-
tor for each partition, the last step in our algorithm is to
‘merge’ these results together and determine which nodes
need to be controlled via an insertion of a ‘switch’. A switch
is just a gate which serves to output a fixed logic value dur-
ing STATIC mode. In normal ACTIVE mode, a switch will
behave like an ordinary buffer. For example, an AND gate
with the STATIC COMPLEMENT signal as one of its in-
puts is a switch for forcing a logic value of 0 during STATIC
mode. Similarly, an OR gate with the STATIC signal as one
of its inputs is a mechanism for logic 1-forcing.



Enable automatic dynamic variable reordering;
FinalBDD = the constant-1 ROBDD;
for all gates in the circuit do

/* Assume that the output of this gate is node i
and its inputs are nodes a, b, ... , m */
if current gate has more than 1 leakage tier then

LeakageBDDi = BuildBDD(LeakageClausei);
Assign arc weights to LeakageBDDi;
FinalBDD =

∏
(FinalBDD)(LeakageBDD);

end
end
BestShortestPath = NULL;
α = user-specified threshold limit;
while α ≥ 0 do

TempPath = ShortestPathTo1(FinalBDD);
if Length(TempPath) < BestShortestPath then

BestShortestPath = TempPath;
end
α = α - 1;
Dynamically reorder the nodes of FinalBDD using
a different variable reordering heuristic;

end
Return BestShortestPath;

Algorithm 1: Partial Input Vector Identification

Switches should not just be inserted at every internal
node belonging to the cut set. To minimize the overhead
penalty, we only insert a switch at an internal node if its
‘natural’ STATIC mode input and output values do not
match. That is, consider a cut occurs on node x. Then,
x will be an output in one partition, let’s say partition A,
and an input in another, let’s say partition B. To deter-
mine whether a switch should be inserted at node x, we
first find out what the ‘natural’ logic value for x will be
during STATIC mode under the pre-identified partial in-
put vector solution for partition A. Then, we compare this
value with that which is required by partition B’s partial
input vector solution. If the values match or if there is a
‘don’t care’ in B’s partial input vector at the corresponding
input node location, then we don’t need to insert a switch
at x because the values can ‘naturally’ converge. If they
don’t, then a switch is needed at x to force out its opposite
value during STATIC mode. This is because the value of x
needed to compose B’s partial input vector solution will be
different from that which is normally outputted by A under
A’s partial input vector solution.

Care must be taken when actually implementing a switch,
for we have empirically found that if the switches were
implemented in normal CMOS configuration or as basic
latches/MUXes, then the resulting leakage consumption of
the switches themselves can easily make up for much of the
leakage reduction benefit gained from generalizing nodal
control. The proper way to implement a switch is to modify
a standard CMOS AND/OR gate so that it has transistors
‘forcefully’ stacked. For more information on this method,
we refer the readers to [8]. Figure 3 shows our logic 0-

VDD

GND

STATIC

STATIC

Input

Value=1
PMOS
W=1

PMOS
W=1

NMOS
W=1

NMOS

W=0.5

NMOS
W=0.5

PMOS
W=0.5

PMOS

W=0.5

NMOS

W=1

Value=1

Using a forced-stacked AND gate to force an input value of
1 into an output value of 0 during STATIC

Output
value=0
during

STATIC, but
unchanged

during ACTIVE

Input
Value=1

Fig. 3. Low-Leakage Logic 0-Forcing Switch

forcing switch. The logic 1-forcing switch can be derived in
a similar manner, but using an OR gate instead of an AND
gate.

The formulation of our Generalized Nodal Control
scheme is now complete and can be summarized as follows:
given a target circuit, first partition it into a set of suit-
ably small sub-circuits, then individually identify an opti-
mal ‘partial’ input vector for each partition using ROBDDs.
Finally, perform input-output compatibility analysis at all
internal nodes to carry out judicious switch insertion.

D. Time Complexity of Generalized Nodal Control

The time complexity of our algorithm is O(N log N)
for the shortest-path finding procedure via Dijkstra’s Al-
gorithm. However, since N, the number of nodes in Fi-
nalBDD, is exponential with respect to the number of leak-
age tiers introduced for each gate, we actually end up with
an exponential time complexity (i.e., O(3n log 3n) if 3 leak-
age tiers are used for each gate type, which is the case
in this work). Little n in this case denotes the number
of gates in the partition. This exponential time complex-
ity more or less agrees with the NP-completeness of the
input assignment problem. Nevertheless, since we can al-
ways reduce n in the above equation by partitioning more,
the actual runtime of our method is actually not as bad as
it appears. Also, instead of Dijkstra’s algorithm, a faster
shortest-path-finding algorithm could have been used to re-
duce the runtime as well.

IV. Experimental Results

We conducted all of our experiments on a machine with
320MB of Ram and running on an Intel P2 600Mhz proces-
sor. 70nm technology was used in our SPICE simulations.
All algorithms were implemented in C, and two off-the-shelf
packages, one ROBDD[14] and one MLFM partitioner[15],
were used in this work. A meaningful set of circuits taken
from the ISCAS85 and MCNC91 benchmarks were used for
experimental tests.



TABLE II
Leakage Current Reduction Comparisons

ileak (uA) Num. of ileak (uA) % ileak Runtime
Original Partitions GNC Reduction (secs)

i6 235.78 15 185.27 21.4% 23
i7 310.97 20 178.86 42.5% 41
i8 596.69 40 386.90 35.2% 93
i9 245.02 25 131.44 46.4% 23

i10 1110.00 80 800.57 27.9% 190
c2670 309.82 20 237.98 23.2% 20
c3540 530.82 40 398.12 25.0% 61
c5315 715.96 50 572.99 20.0% 109
c6288 1430.00 80 1060.00 25.9% 90
c7552 1080.00 50 828.56 23.3% 79

TABLE III
Area, Delay, and Dynamic Power Overhead Additions

Area Area Delay Delay Dynamic Dynamic
Original GNC Original GNC Power Power
(SIS) (SIS) (SIS) (SIS) Original GNC

i6 592528 599488 9.11 11.2 7.22e-4 7.34e-4
i7 691360 734512 9.95 12.18 9.28e-4 1.00e-3
i8 1309872 1485264 15.78 19.22 2.23e-3 2.54e-3
i9 629184 747504 16.10 18.29 8.62e-4 9.87e-4
i10 2730176 3126896 49.01 56.78 3.74e-3 4.34e-3

c2670 876496 960016 23.67 30.48 1.41e-3 1.55e-3
c3540 1328432 1556720 40.71 49.28 2.44e-3 2.84e-3
c5315 2072688 2294016 33.53 38.72 3.60e-3 3.99e-3
c6288 4069280 4319840 112.91 129.63 1.43e-2 1.67e-2
c7552 2895824 3163088 36.98 42.47 6.78e-3 7.75e-3

Table II shows the leakage reduction effectiveness of
GNC, short for Generalized Nodal Control. α (from the
partial input vector identification algorithm) was arbitrar-
ily set to 10. Only one arbitrary choice of the partition
count is shown due to space limitation. The results indi-
cate that GNC can achieve a moderate amount of leakage
reduction with a very low runtime, regardless of the size of
the target circuit. Of course, adding internal node switches
naturally introduces some overhead1, so we show just how
much this amounts to in Table III (HSPICE and SIS[16]
were used). As it can be seen, this overhead is kept rela-
tively low due to the ‘partialness’ of input vectors as well
as the selectiveness of switch insertion.

Some heuristics could have probably been used to reduce
the penalty shown in Table III. For example, one could
try to insert switches only on the non-critical paths. How-
ever, we refrained from doing so because one, the overhead
does not appear to be overly excessive in the first place,
and two, if such heuristic were used, then the optimality of
the result will depend significantly on the order in which
the partitions were processed, since the slack and the inter-
nal node values must be updated in-between each partition
processing. At this time, it is not clear to us how to best
determine the optimal order without degrading the runtime
significantly, so we leave this matter for a future work.

Finally, Table IV shows that our technique is scalable for
circuits of arbitrarily large size. As it can be seen, larger
circuits merely require more partitions to be formed in or-
der to keep the runtime and leakage reduction effectiveness
satisfactory.

1It should be noted that this penalty is present in the method
of input assignment as well, since the switches themselves inevitably
contribute some overhead to area, dynamic power consumption, and
delay(if inserted on the critical path).

TABLE IV
C6288: varying partition count vs. reduction and overhead

Num of ileak Runtime % Area % Delay % D. Power
Switches GNC (uA) (secs) Increase Increase Increase

60 236 1140 104 5.4 % 13.9 % 15.14 %
80 262 1060 90 6.1 % 14.8 % 16.7 %
100 289 1013 84 6.7 % 14.6 % 18.22 %
120 314 946 80 7.3 % 16.4 % 20.01 %

V. Conclusion

In this paper, we have presented a novel, decision
diagram-based leakage reduction technique called General-
ized Nodal Control. Experimental results demonstrate the
viability of our approach, with our technique achieving on
average close to 30% leakage power reduction with a worst
runtime of 3 minutes only.

VI. Future Work

The Generalized Nodal Control scheme described in this
paper attempts to control any node in the circuit as long
as it leads to a good amount of leakage reduction. As a
result, the final critical path delay can worsen due to the
insertion of switches along nodes in the critical path. If
it is absolutely critical to keep the worst path delay from
increasing, then one can apply the following alternative ver-
sion of Generalized Nodal Control, which we are currently
working on for a future work: the idea is that in phase 2
of the algorithm where we identify the optimal partial in-
put vector, for every one of those input nodes which belong
to the critical path, we assign a weight of infinity to both
its THEN and ELSE arcs to try to force the final short-
est path solution to not involve the control of these nodes.
Also, when applying input assignment to each of the indi-
vidual partition, we must do this in a depth-first manner
so that the slack can be guaranteed to be correct for all
of the nodes at any point in the algorithm. We start with
the partition with the lowest depth, identify its optimal in-
put vector and those nodes which need to be controlled,
update the delay slack at all of these nodes due to switch
insertion, then continue on with input vector identification
for the next deepest partition. This alternative approach
will result in no increase in the final critical path delay, al-
though the degree of leakage control is most likely going to
degrade due to the new restrictions placed on which nodes
are controllable and which are not. We plan to investigate
this technique more in an upcoming work.

References

[1] T. Karnik, Y. Ye, et al., “Total power optimization by simulta-
neous dual-Vt allocation and device sizing in high performance
microprocessors,” in Design Automation Conference, 2002, pp.
486–491.

[2] S. Shigematsu et al., ”A 1-V high-speed MTCMOS circuit scheme
for power-down applications,” in Proc. IEEE Symp. VLSI Cir-
cuits Dig. Tech. Papers, 1995, pp. 125–126.



[3] Y. Ye, S. Borkar, and V. De, ”A new technique for standby leak-
age reduction in high-performance circuits,” in Intl. Symp. VLSI
Circuits Dig. Tech. Papers, 1998, pp. 40–41.

[4] D. Lee and D. Blaauw, ”Static leakage reduction through simul-
taneous threshold voltage and state assignment,” in Proceedings
of the Design Automation Conference, 2003, pp. 191–194.

[5] M. C. Johnson, D. Somasekhar, and K. Roy, ”Models and algo-
rithms for bounds on leakage in CMOS circuits,” in IEEE Trans.
Comput.-Aided Design Integrated Circuits Sys., 18:714–725, June
1999.

[6] F. Aloul, S. Hassoun, K. Sakallah, and D. Blaauw, ”Robust SAT-
based search algorithm for leakage power reduction,” Interna-
tional Workshop on Power and Timing Modeling, Optimization
and Simulation, Sevilla, Spain, 2002.

[7] K Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, ”Leak-
age current mechanisms and leakage reduction techniques in
deep-submicrometer CMOS circuits,” in Proceedings of the IEEE
91(2):305–327, February 2003.

[8] S. Narendra, S. Borkar, et al., ”Scaling of stack effect and its ap-
plication for leakage reduction,” in Intl. Symp. Low Power Elec-
tronics and Design., 2001, pp. 195–200.

[9] S. Sait and H. Youssef, VLSI Physical Design Automation. World
Scientific, 1999.

[10] R. E. Bryant, ”Graph-based algorithms for Boolean function ma-
nipulation,” in IEEE Trans. On Computers, 35(8):677-691, 1986.

[11] E. Felt, G. York, R. Brayton, and A. Sangiovanni-Vincentelli
”Dynamic variable reordering for BDD minimization,” in Design
Automation Conference, 1993, pp. 130–135.

[12] A. Ferre and J. Figueras, ”Leakage power bounds in CMOS digi-
tal technologies,” in IEEE Trans. On Computer-Aided Design of
Integrated Circuits and Systems, Vol. 21, pp. 731–738, June 2002.

[13] J. P. Halter and F.N. Najm, ”A gate-level leakage power reduc-
tion method for ultra-low-power CMOS circuits,” in IEEE Cus-
tom Integrated Circuits Conf., 1997, pp. 475–478.

[14] CUDD: http://vlsi.colorado.edu/∼fabio/CUDD

[15] hMETIS: http://www-users.cs.umn.edu/∼karypis/metis/hmetis

[16] SIS: http://www-cad.eecs.berkeley.edu/Software/software.html


