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Abstract— In this paper, we propose a novel method for fastand size tuning, since a well-tuned circuit that neglects process vari-
effective gate-sizing and multipleV; assignment using Lagrangian ation during the tuning process typically exhibits a "wall-like”
Relaxation (LR) and posynomial modeling. Our algorithm opti-  distribution in its primary outputs’ arrival times [7]. This is be-
mizes a circuit's delay and power consumption subject to slew rate cause to squeeze the most performance benefits out of sizing, a
constraints, and can readily take process variation into account. We standard tuner will size in such a way that most, if not all, of the
first use SPICE to generate accurate delay and power models in primary outputs’(PO) arrival times end up with equally critical
posynomial form for standard cells, then formulate a large-scale, values. This exacerbates the issue of process variation and final
convex optimization problem based on these models. Finally, we delay uncertainty.
perform LR to solve for the globally-optimal® set of transistor sizes
and V;s (with discretization) for each gate. Our key contribution is In this paper, we propose a novel method to perform efficient
that we show for the first time that using posynomial models, LR- gate-sizing and multiplé/; assignment using LR and posyno-
based circuit tuning can be carried out in a "generalized” or non- mial modeling. Our algorithm optimizes a circuit's delay and
Gauss-Seidel manner for improved accuracy. Experimental results power consumption subject to slew rate constraints, and can
show that our implemented tuning tool, LARTTE, exhibits linear  readily take process variation into account. We first use SPICE
runtime and memory usage requirement, can effectively tune a cir- to generate accurate delay and power models in posynomial
cuit with over 15,000 variables and 8,000 constraints in under 7 form [10] for standard cells, then formulate a large-scale, con-
minutes, and can minimize the probability of final delay variation ~ vex optimization problem based on these models. Finally, we
by introducing a margin of separation between the worst output perform LR to solve for the globally-optimal (with respect to
arrival time and all other outputs’ arrival times. the posynomial-based optimization problem, without discretiza-

tion) set of transistor sizes ands (with discretization) for each
gate. Our main contribution is that we show for the first time that
|. INTRODUCTION LR-based circuit tuning can be carried out in a ‘generalized’ or
. . . non-Gauss-Seidel manner. In previous works, the Elmore delay
a2 o et was s n h LR o i consesuentycor
level tuning (for delay, power n’oise etc.) can be extremely tim strained the.optlmlza.tmn flow to a serialized gnd ordered process
. ' P \ ) more on this in Section IlI-E). Our posynomial-based approach
consuming and even overwhelming for today’s designers. In past o
. ; oes not suffer from this limitation, and can thus tune much more
works [1] [2], it was shown that the method of Lagrangian Re-

) L . accurately and faster. Experimental results show that our imple-
laxation (LR) can be used to solve the circuit tuning problem y P P

efficiently and effectively. However, there are several flaws witﬂ1ente<j tuning tool, LARTTE, exhibits linear runtime and mem-
Y Y. ' . ory usage requirement, can effectively tune a circuit with over
these earlier works, such as the lack of power consumption c

: . : : 0{‘5,000 variables and 8,000 constraints in under 7 minutes, and
sideration as well as the use of the simple-yet-inaccurate ElImore’ =~ . .~ . . : o :
. can minimize the probability of final delay variation by intro-
delay model. Furthermore, as the magnitude of leakage power(}s
[

. . : ; ucing a margin of separation between the worst output arrival
quickly catching up to that of dynamic power [3], the importan o e .
) . " . me and all other outputs’ arrival times. Experiments also show
task of using multiplel/; levels in a design [4] [5] for leakage

power reduction must be addressed in the circuit tuning procethat LARTTE compares favorably with SNOPT [11], a state-of-

The-art general-purpose optimization problem solver. LARTTE
As CMOS scales into nanometer technology, another proble: g purp pamization p v

s . d . ilover 250x faster than SNOPT, but can achieve the same quality
that must be dealt with in the tuning process is on-chip Process ocuits

variation [6]. From device geometry to device parameters, many |
things can vary to cause the final critical delay value to differ This paper is organized as follows. Background and posyno-
non-trivially from that calculated via static timing analysis. Thismi

in t kes vield rate estimation difficult. Thi blem i al modeling information are detailed in Section Il, followed by
N turn maxes yield rate estimation difficuit. This problem 1S €Sg,q 5y | ARTTE algorithm description in Section Ill. Modifi-
pecially severe in the case of a circuit after automated transis

tt?a(tions to LARTTE to guard against process variation is detailed
10ptimality is with respect to the posynomial approximation-based optimizall S?Ct|0n |_V- EXpe”mem‘_iI results and concluding remarks fol-
tion problem, without discretization. low in Section V and Section VI.




[l. PRELIMINARIES AND POSYNOMIAL MODELING equality constraints, respectively. f§, g;, andh, are all con-
vex functions, then the problem becomes a convex optimiza-
In this SeCtion, we first define the notations that we will be USion prob|em. An important property of the convex Optimization

ing throughout this paper. Then, we provide some backgroungloblem is that any locally-optimal solution is also guaranteed
information on posynomial functions and optimization problemg pe globally optimal.
in general. Finally, we describe the method that we used to ac-A posynomial function has the form:
curately characterize the various attributes of a gate (ie delay, X
?ynamm power, leakage power, input slew, etc.) as posynomial Fa) = Z B T @)
unctions. =

. where f is a real-valued function whose domain € R" is
A. Notations non-negativec; > 0, anda;; € R. A posynomial is a sum

The following notations are used throughout this paper. Give?f monomials. It is well-known [10] that under a simple expo-
a combinational circuit, we first introduce two auxiliary nodesNential transformation, a posynomial function can be converted
a sink and a source (see Figure 1). The sink has all of its fan-if§0 @ convex function. Hence, if an optimization problem is
from the primary outputs, and the source has all of its fan-oufPressed in terms of posynomial functions, then a global min-
to the primary inputs. The nodes in the circuit are labeled ififum can be easily found by searching for a local minimum,
reverse topological order, with the sink having the index of #hich can be done with any formal mathematical programming
and the source having the index of N (assume N total nOdegyc;hmque [12]. _Thus, this is the main motivation in this work for
Let input(i) andoutput(i) be the set of node indices that con-USing posynomials to model gate characteristics.
nect directly to the input(s) and output(s) of nadeDefine D
andg to be the set of primary inputs and internal gate compaz. The Posynomial Modeling Procedure

nents in the circuit, respectively. Fere G, a; is the arrival : ; . : :

. ’ ) . ot The posynomial modeling procedure is essentially done via

time at the output of gatg W, is the width of the NMOS and |o55t-square regression analysis on SPICE simulation data. For-
PMOS (adjusted by 4 ratio), V., andV;,, are the NMOS and ma)ly, we define the posynomial parametric regression problem

PMOS threshold voltages,;,; is the loading capacitance (ex- s follows:

pressed as a function of the widths of the loading gates), and 5
s; is a designer-specified upper bound on the input slew rate L — - oy az nj ‘
gatei2. LetT;, D;, Puynamic. ANd Proagage, denote the input q:tosyflt. minimize ; ;c]xu x5 bi
slew rate, propagation delay, dynamic power, and leakage power
posynomial functions of gatg respectively. Lastly, defing,,,
andU.,, to be the lower and upper bound6f,,, L;n, andUsn,  \wherex € R™*" corresponds to m different sets of a n-vector
to be the lower and upper bound,,, andL,,, andUy,, tobe o tynable parameter values,c R is a vector of m differ-

subjectto ¢; >0 ?3)

the lower and upper bound &f,,. ent SPICE-simulated scalar results (each corresponding to one
unigue simulation run under the associated tunable parameter
values in x), and k¢ € ®*, anda € RF*™ are the unknown

parameters that we are trying to determine. The value of m
is user-defined and corresponds to the number of SPICE sim-
ulations that will be run to generate the necessaryatues for
posynomial-fitting. In general, a higher m leads to a greater ac-
curacy in the final characterized posynomial, but in turn requires
a longer pre-processing time (as SPICE simulations are inher-
ently time-consuming). The value of n is the number of tunable
parameters which affect the metric being approximated. For ex-
ample, if the delay posynomial form is being determined, then n
equals 5, for the delay of a gate depends oﬁ’,\KZL, Vin, Vip,
and s (input slew rate).

The posynomial-fitting procedure works as follows. First, we

N: auxiliary node 0: auxiliary node

Fig. 1. A combinational circuit.

B. Background: Optimization Problems and Posynomial Fun

fions select m different sets of n-tunable parameter values and simu-
In general, optimization problems [12] have the form: late each individually to find m different;bvalues. Then, af-
o ter plugging these terms back into equation 3, we are left with
minimize  fo() 3 unknowns, k, ¢, and.. To solve for these, we first guess a
subjectto gi(z) <0,i=1,...,m value for the vector and its dimension k. Then, usingand k,
hi(x)=0,i=1,...,n (1) we solve for the last remaining unknown, c, using CFSQP [13],

. o . a general-purpose unconstrained problem solver. If the result-
wherez < R” is an-vector of optimization variables anfh,  ing least-square value using the solved c is below an error toler-
gi, andh; are the objective function, inequality constraints, an@nce level, we stop and return the characterized posynomial form

2For simplicity of presentation,; ands; are assumed to be the same for both  3Size of NMOS. The PMOS width is adjusted byyavalue. For ease of
the rising and the falling transition. presentation, this is not shown in this paper.



(the inner summation term). Otherwise, we repeat the fitting- TABLE |
procedure for a different guess @fand k, and continue to do so MODEL FITTING ERROR MEAN AND STANDARD DEVIATION
until the least-square error is minimized.

H H H H H H [[ Gate [ Mn. ] Dev. [[ Gate [ Mn. [ Dev. [[ Gate [ Mn. [ Dev. J]

To avoid excessive trlal_ count in guessing t_he pos_ynom|al -
form, we employ the following heuristic when trying to find the vPL_| 26 | 56 || NarPD | 02 | 44 || NodtP | 01 | 32
. . . . InvTP -0.1 2.5 Na7PL -0.1 1.8 No5PD -0.1 2.1
right k, ¢, anda. First, we guess a dominant monomial term by Na2PD | 12 | 65 || NarTP | -02 | 48 || NosPL | 00 | 18
.y . . Na2PL -0.0 1.6 Na8PD -0.2 4.5 No5TP -0.2 4.7
exploiting well-known dependence relationships. For example, NazTP | -01 | 34 || NasPL | 0.0 | 18 || NobPD | 0.0 | 22
for the delay posynomial, we start with a term that Hgs* and NagPL| 00| L8 || g |02 |45 [ Nes |51 |5z

Na3TP -0.2 4.2 Na9PL -0.0 1.9 No7PD -0.1 2.3

C1, since we know in general that the delay of a gate depends on oo a5 TP
its loading capacitance and its drive strength. Then, based onthe [Set | 09 | 18 [ QoD | 58 | o6 || Norp 1 91 1 39

NadTP -0.2 No2PL -2.5 No8PD -0.1

resulting fitting error using this guess, we gradually adjust the NasPD | 02 | 49 || Noztb | 0.1 | 32 [| NosPL [ -28 | 56

Na5PL -0.0 1.8 No3PD -0.7 6.3 No8TP -0.1 3.0

power coefficients appropriately and add more monomial terms NesTP | 02 | 47 [ NPl | 28 ] 56 || NooPD | 01 [ 25
into the posynomial equation until we find a reasonably accurate Na6PL | -00 | 18 || NodPD | -02 | 45 || NesTP | -01 | 31
approximation.

We give the following example to more clearly illustrate the )
posynomial-fitting procedure. Suppose that we are trying to déistribution for a NANDG is also given in Figure 2. The unit for
termine the delay posynomial of a particular gate, say a CMOBe x-axis in these figures is again the % difference.
inverter. Then, let m=2 and pick the following two sets of
tunable parameter value§W,=3, V,,=0.7, V,,=0.7, G.=5,

Dynam i powerm odel

$=0.5 and{W,=4, V;,=0.9, V,,=0.8, G,=2, s=0.%. Next, we 120 | 3
simulate in SPICE the delay of an inverter under these two sets g0k E
of parameters, and call the resultsdnd . Assume for this 5 Sk E
example that b=15 and b=10. Given these data, the Posyfit ) S T
problem is reduced to the following: O vermonyy e
k 2 g 25 3 ;
minimize ((Z cj3“1-fo.7‘*2-7‘0.7“3-7‘5%0.5%’) - 15) + gk ]
j=1 s BE [ E
k 2 -100 w‘iIO 6‘0 AIO 72IO (IJ 2‘0 4‘0 6‘0 8‘0 100
((Z ¢;4%170.9729 (.8%31 24 0.7%) - 10) + pehymodel
J=1 gloo = 4
subjectto ¢; >0 4) §50 L .
It should be noted that the k, c, amdvalues are required to G0 w0 o 40 @0 0 . 40 e w0

be the same across all m copies of the inner summation term,
since we are trying to determine a posynomial model that would
be accurate for any set of parameter values. With the reduc 2 Model-fitting error distribution for a NANDS gate.
Posyfit problem, we can then carry out the iterative fitting proce-
dure to find the unknown parameters (k, c, ar)dand thus the I1l. POSYNOMIAL-BASED LAGRANGIAN RELAXATION
delay posynomial function, for the inverter. The returned posyn-
omial is expressed as a function of;\W,,, V,, Cr, and s. For |n this section, we derive a generalized Lagrangian Relaxation
illustration purpose, the following is the actual inverter delayuning algorithm which incorporates the use of posynomial delay
posynomial form found in this work: 1, (W,,Vin,V,,Cr,S)  and power models. The section is organized as follows. In I1I-A,
= 0.39V,,, V| + 2.14W1CLVy, + 623V),°WO-° + 12.2V + e formally formulate the circuit tuning optimization problem,
29W0SV VD5 +0.148° + 1.07W, 1CL V7, V! or the Primal ProblemZP). 1II-B introduces the Lagrangian

In this work, we set the stopping criteria of the fitting proceSubproblem,LRS/). |lI-C states the first-order KKT condi-
dure to be when 90% of the fitting samples, using the guesstdn which will be used in our algorithm to significantly speed
posynomial form, agree numerically to withth 10% of their up the tuning process. IlI-D outlines the Lagrange Multiplier
corresponding SPICE results. Also, when generating the SPIGEjustment scheme used in this work, while IlI-E describes the
values, we assumed the worst case conditions (ie. for delay simethod by whichCRS /X can be solved optimally, efficiently,
ulations, the input signal to the last transistor in the stack is setémd accurately in a generalized manner. This will in turn solve
arrive last, etc). Table | shows the model-fitting error mean arwlr original problemPP) as well. Finally, in IlI-F, we discuss
standard deviation for the characterized gates. Prefixes Inv, Nlag necessary post-tuning Miscretization heuristic as well as
and No in the table represent inverter, NAND, and NOR gategive a summary of LARTTE.
and suffixes TP, PL, and PD represent delay, leakage, and dy-
namic power respectively. The unit for the entries in the tabl
is the % difference (in either direction) between the sample
values using the final posynomial form and their corresponding | general, the problem of minimizing the maximum delay
SPICE results. For example, the leakage power posynomial #d power consumption (dynamic + leakage) subject to arrival
an inverter (InvPL) has a mean fitting error of 2.6%, and a stafime and slew constraints can be formulated as a large-scale,
dard deviation of 5.6%. For illustration purpose, the fitting errononlinear programming problem. We call the following the Pri-

. Primal Problem Formulation



mal Problem PP): both sides. Since the logarithmic function is monotonically in-
creasing, this can be done without affecting the final result. The

PP: minimize aiao+ @2Peakage(Wg, Vin, Vip,s) - :
newly transformed problem is the following:

+ asPaynamic(Wg,Cr, Vin, Vip, s)
subjectto a; < ao, j € input(0)

aj + D; < a;, i € GNVJ € input(i)

Di<a;,1€D + 3Py namic(Wg,Cr, Vin, Vip, s)

T, < s, 1€ (DUG) e%
subjectto In(

minimize a1 + a2 Pt gpage(Wa, Vin, Vip, s)

) <0, j € input(0)

sz‘ < ng < wa i€g 6‘13

Lip, < Vip, < Uspys i €G 5) n(iea: ) <0, i€ gGnVyj e input(i)
wherea;, ay and oy are the normalized weighting factors to ln(D’z:) <0,ieD
the maximum delay of the circuit,y (arrival time of the artifi- 6“;
cial sink node), total leakage powéicqq4e, and total dynamic In ( T )<0,i€(DUG)

4 ; ; s¥/) =

power, Pyynamic”- The sum ok, a2, andag is 1. The weight- e”i
ing factors are user-assigned based on the operating condition of Lo W, ' <1, WUl <1,i€G
the targgt appllcano_n, ;uch as how m_uch time spentin |QIe mode, Lmin;,} <1, Vi, U;& <1,ieg
how critical is the timing of the design, etc. (Alternatively, a 1 o )
more sophisticated: assignment scheme could be applied, ie. LipVip, =1, Vip, Uy, <1, 1€ G @)

iteratively invoking LARTTE and adjusting the factors along  \yhere parameters withsasuperscript represent those after an
the way based on the previous iteration’s tuned results). For %U(ponential change of variable.

other notations, see Section II-A. . From equation 7, we can form the general Lagrangian func-
~ From simple rearrangement, equation 5 can be transformggh [12] by introducing non-negative Lagrange multipliers to re-
into the following: lax each arrival time and slew constraint into the objective func-

tion. Simple bounds on the transistor widths drig are not
relaxed. For example, fgr € input(0), let /\j‘o denote the mul-

) <0. Fori € GNVj € input(i),

minimize  a1ao + a2 Pieakage(Wg, Vin, Vip, s)
+ a3denamic(Wg7 CL, th, th, S)

*
J

tiplier for the constrainin( e

subject to 4 <1, j € input(0) €0
ao - a5 4 D*
a; + D, let A2, denote the multipliers for the constrain{“— tDiy <o,
< <1,i€GNVj € input(i) . . . S e’ .
a; and fori € (DU G) NVj € input(i), let \;; denote the multi-
Di o 1,ieD pliers for the constrainin( T) < 0. Fori € D, let A2, denote
a; e’ x
T _ Lic the multipliers for the constrairiti( IZ’;) < 0. Finally, let A be
_ e
e € (Pug) the vector of all the multipliers introduced. Then, the general
LWyt <1, W,Ugl <1,i€@ Lagrangian function can be written as:
Lmin;j <1, Vin, U[ni <1l,ieg L(Wg,Vin,Vip,a,s,\) = a1e® + a2Peakage(Wyg, Vin, Vip, s)
Lip,Vip! <1, Vip, Ut < 1,0 €G (6) + 3 Paynamic(Wg, Cr, Vin, Vip, s)
In general, PP is not in the form of a convex optimization A €%
problem. However, posynomials can be readily transformed into i ag
convex form by the following simple exponential transformation .
of the variables [10]: Let represent the vector of all tunable pa- +3 Y Adm e’ :r D;
rameters, and transform each entryin x to a new variabley;, €0 jeinput(i) i
wherezx; = e¥. Now, y represents the vector of tunable param- T*
o . . . S 7
eters, and it is substituted into tHEP equation for x to form a + oy Y. Al (6)
convex optimization problem. Applying LR to the transformed 1€(DUG) jeinpul(i)
PP'Wi” give us an op'timal solution in tgrms of y, but we can I Z AL In (1}) ®)
easily recover the desireds by exponentiating thg;s. e et

. . . . . . The Lagrangian relaxation subproblem associated with a par-
B. Lagrangian Relaxation with Logarithmic Transformations ijcylar fixed Lagrange multiplier valug (CRS/)) is:

From PP, after making the necessary exponential variabI%RS//\: minimize  £x(Wg, Vin, Vip, a, s)
transformations (to both the posynomials as well as the arrival o
time terms), the next step is to make a Logarithmic transforma-
tion® on the non-simple constraints by taking the natural log of Lmin;f <1, VmiUgli <1l,i€eg
Lip,Vip, <1, Vip,Upp; <1, 0€G  (9)

subjectto L., W, ' <1, W,U,' <1,i€g

4For simplicity of presentation, the activity factor is not shown in the param-

eter list of thePy, o mi. t€rm because it is not a tunable parameter. . . L.
SWe perform the Logarithmic transformation because empirically, we found From the theory of the Lagrangian function, it is known that

that it resulted in exceptional runtime improvement. there exists a vector value af for which the optimal solution



of LRS/\ is equal to the optimal solution of the origin®P  other multiplier components can be done in a similar manner
problem. Hence, if we can find thisvalue, then we can find the (in reverse topological order). After forming an initial guess,
optimal solution to the original problem (by solvilgRS/\). we then iteratively updaté* using a modified sub-gradient ap-
Before we discuss our strategy for finding the corveealue, proach shown in Table Il, line 3, to form a new guess at every it-
we first present a key part of our algorithm which is largely reeration.d;. is a step size value which is initialized to 1 and gradu-
sponsible for the excellent runtime of LARTTE. ally updated over iterations using a Trust-Region approach [14].
We continue to iterate and make new guesses for the correct, op-
C. First-Order KKT Necessary Condition For The Lagrangiamal value of A until our LRS /A" value converges to that of
Function Solution the PP value. When this occurs, we will have found our desired

) ) . ) . multiplier A, which is just equal to th&* at the stopped iteration.
For a given Lagrangian function that we are interested in solv-

ing, The theory of the Lagrangian tells us that for a particu-

lar vector value\ to be the correct, optimal solution multiplier, E. SolvingCRS /X in a Generalized Manner
the first-order Kuhn-Karush-Tucker (KKT) necessary condition
must hold. Under the first-order KKT condition, the gradient
of the Lagrangian function with respect to all variable param-
eters must be equal to 0. That T§,W;_ L£3=0, Vv L£,=0,
and Vy, £,=0for 1 < i < NG+PO. Also,V,:£,=0 and
VS;EA:O for1 < ¢ < PIH+NG+PO. Therefore, in trying to
find out what the correct, optimal multiplier valleshould be,

Our LARTTE algorithm terminates when the solution of
RS /A converges to that oPP. In order to do this, we must
ave a method for solving RS/ for the optimal (with re-
spect to the giver\) tunable parameter vector, x. In previous
works [1] [2], due to the use of the EImore delay model, this
procedure had to be carried out in a Gauss-Seidel-like or serial-

e need oy considrcases where e bovecondionsar 9 AT e eon s ol n e Ete mote e
isfied. This ‘filtering’ process is the key to dramatic runtime y

reduction and capacitance values along the path, not as a function of the
By takihg V.- £3=0 and V.- £,=0 to the Lagrangian, we tunable parameters in the circuit (specifically, the widths of the
obtain the following required optimality condition on the arrival9ates). Therefore, the process of solving for the tunable vector

time and slew constraint multipliers: xin LRS /X cannot be done in one single iteration (in a gener-
X alized manner). This is why in [1] and [2], the authors resorted
Z /\fo = a1e® to a greedy, serialized approach, where the tunable parameters
j€input(0) (x;s) are solved in topological order and one-at-a-time so that af-
A b eti ter solving for onex;, its corresponding downstream resistance
D Ni= D, GE e ie(Pug) d capacit | be updated iately for the next
o v e +D; and capacitance values can be updated appropriately for the nex
Jeimput(t) FrOCoutput() N s gate'sz; to be solved correctly. The order-dependent and serial
Z A = Z (L 3Df ’\if aT’: ) nature of this solving-procedure makes the tuning process inac-
jEinput(i) k£0€ output (i) e’ + Dy 0s; T 0s; curate and time-consuming, and this is the key drawback to these
OP yrace OPamic . previous works.
o lasf = +as dss; ,i1€(Dug) (10) In this work, we overcome the above drawback by using

Note that h line in 10 lies t individual set of ngosynomial-based models in the LR framework for the first time.
ote that each line In LU applies 1o an individual Set of oMy 1he posynomials are characterized with respect to only
ponents ofA and is independent to the other lines. For exampl

; : . . §he tunable parameters of the circltR S/ is expressed com-
if a particular v_ector val_ué.\ Is to be degmed a c_and@ate forpletely in terms of x, and the entire problem can be solved opti-
the correct, optlm.al .multlplle)\, then all of its outgoing prlr‘gf\ry mally in a generalized manner (in one single iteration) using any
output (PO) multiplier components must sum up .todae °: formal mathematical programming technique. Thus, the serial-
Fgrthermore, fo_r all gates P U G, all of thelr_lncommg mUIt"_ .ization/order restriction is removed entirely in our posynomial-
pliers (from fan-in ga;es) must sum up to their outgoing mUItIIOIIbased method, leading to a much more accurate and faster tuning
ers (multiplied byea;%bD:). In considering only those values of process. The accuracy, efficiency, and elegance of our gener-
A\* which satisfy equation 10 as solution candidates for the codlized solving-procedure is the key to LARTTE’s performance,
rect, optimal multiplier\, our tuning process can significantly and is the main contribution of this work.
cut down on runtime by avoiding unnecessary computation in- We resort to an off-the-shelf solver in L-BFGS-B [15] to solve
volving impossible\ candidates. LRS/A. L-BFGS-B implements the well-known, Limited-
Using equation 10, we now present our method for solvinflemory BFGS method [12], which has been proven to be ex-
for the correct, optimal value (and consequently the optimalceptional for handling large-scale, unconstrained problems. This
solution of our original problem as well). method belongs to the class of quasi-Newton methods, which
uses a Hessian approximation of the objective function (instead
of the exact Hessian) to compute the Newton search direction for
the minimum. However, unlike the standard BFGS method, the
We employ an iterative, modified sub-gradient method fofjmited-Memory approach uses only the curvature information
finding the desired\ vector. First, we arbitrarily pick a start- from the most recent iterations to construct the Hessian approxi-
ing lambda value which satisfies equation 10. For example, Wgation. This is beneficial for large problems whose Hessian ma-
can start by assigning each of tb\?U to be 22¢”° where N trices cannot be computed at a reasonable cost or are too denst

N
is the number of inputs to sink node 0. The assignment of alb be manipulated easily. To avoid any confusion, we leave out

D. Iterative Multiplier Adjustment for Determining Optimal




gt?pﬁf'g;m ang\;ZTS'iEZ:mg At allocation solution of the critical output’s arrival time can increase from variation.

. = t . . . .

1.k := 1 /*iteration number */ Therefore, any chip yield rate projection that was done can end
= arbirary Intiel vector of onstraint mulipliers satisfying (10) up being highly inaccurate, which is undesirable. To improve
nitialize all optimization tunable parameters . A . ! .. e .

2. SolveLRS /A by calling L-BFGS-B to minimizeZ s (W g, Vitn, Vip, a, s, A) yield estimation accuracy, process variation (specifically final
‘S”l"” OP“T:‘L?;'”EE” found and then compute, . . ., api-nG-+po and delay variation) can be taken into account during the LARTTE
11111 + . . . .
3. /* Adjust multipliers */ tuning process as follows: First, LARTTE is invoked normally
f°rf;rj3=acf1;°epljlg‘ftf5%g° and the critical-path delay and its corresponding output pin is
NZEAR o recorded. Then, using this recorded information, the same criti-
3 " <T> , e cal output’s arrival time constraint is modified/relaxed to derive
AA 4 (e“] +D;‘> R cg a newPP formulation, which is then subsequently solved by
Jt a¥ . .
AW = N LARTTE again. Thus, we have the following:
AL D ) ifieD
7\ O -
NS, % (T—) " ifie(DUQG) minimize aiao + a2 Preakage(Wg, Vin, Vip, s)
ProjectA N ®* to the nearest point satisfying (10) + a3 Piynamic(Wg,CrL, Vin, Vip, s)
4. k:=k+1 . . . .
5. Goto step 2 until the cost functions BfP and LRS /A converge to within subjectto a; < ao, j € input(0), j # c
a specified tolerance At
6. Discretize thé/; solutions ac < (1.0 +n)ao, c = critical PQO0 <n <1
7. SolveLRS /X by calling L-BFGS-B to find the optimal solution a; + D; <a;, i € GNVJ € input(i)
TABLE Il Di<ai,i€D
LARTTE ALGORITHM. T; <si, i€ (DUQ)
Luw; <Wy, <Upy, i €G
the internal details of this method and refer interested readers Lin; <Vin, <Utn;, 1€G
to [12]. Lip, <Vip, <Usp,, 1 €G (11)

It can be seen from equation 11 that the only thing that has
F. Vt Discretization and LARTTE Summary changed from the origingPP formulation is that the old con-
._straint on the original critical output has been modified/relaxed
Up to now, we have treatell; as a tunable parameter in e ; o L
by a user-specified ratig, This is done to explicitly introduce

R. This was done because LR is a technique for opt|m|2|ng margin of separation between the most critical arrival time and

continuously-differentiable problems. Obviously, this is a prob- R . : .
. . . 7 aJl other outputs’ arrival times. By doing so, the probability of

lem because in practice, there is usually only a limited number . L7

inal delay variation can be minimized. The valuerpofanges

V; levels available for use. Hence, in order to rectify this Situaﬁetween 0 to 1. with a larger leading to a areater marain of
tion, we must discretize olf; solutions in the end to the nearestseparation ' ger 9 9 9

allowableV; value. For example, if we find that after tuning, one
of our transistors has an optimigl solution value of 0.176V, but
we can only choose between a device with 0.24\and a de- V. EXPERIMENTAL RESULTS
vice with 0.16VV;, then we would discretize this transistoVs : . .
solution to be 0.16V instead. This discretization step is carried We implemented LARTTE n C+.+ and ran all of our experi-
out at the end of the tuning process for all transistors and théﬂents on a 1.0GHz P4 machine with 1.0Gb of RAM. The stop-

corresponding/; solutions. If needed, the gate sizes can also &"9 criteriqn _Of LARTTE was set to wheRP and LRS /) .
discretized to suit an ASIC synthesis flow. agreed to within 1.0%. Lower and upper bounds of the transistor

Since the discretization step is a heuristic, the quaY—VIdth were 0.2im and 1.Jum, respectively. FoW;, the lower

ity/optimality of the solution after applying discretization seemélnd upper bounds were 0.14V and 0.26%,, was 1.0V. Input

guestionable at first. However, we have empirically found thé\‘ﬂbelw ;anggd frc':'m ?QS t.o 3 51%1)5 gollgvvt (I)e\zlgl\? We:je(;n Za g\? i\\/a'l'
as long as the number &f; levels available for use is aroungd 2P'€ for discretization. U.14V, L. 18V, U.22V, and U.20V. Appro-

4 or more, the solution after discretization will typically be notpriate act?vity_ factprs were as;igned to the pos_ynomi_als through-
too far off from the original, un-discretized solution (as it wifl ©ut the circuit using PowerMill. All SPICE simulations were

be shown in our experimental results section). Hence, our Lﬁ’lmed outin 0.4m technology. W.e conducted our experiments
technique is still reasonable under mild assumptions. on the ISCAS85 benchmark circuits, where the number of gates

L ranged from 214 to 3,512, and the total number of tunable pa-
Asummary of LARTTE s given in Table Il. rameters from 654 to 15,198. Table Il shows the LARTTE op-
timization results. Only the ) were discretized. To illustrate
IV. LARTTE WITH PROCESSVARIATION GUARD the convergence property of LARTTE, we show in Figure 3 the
convergence sequence for a 12-bit ALU controller. As it can
Recall that if process variation were not taken into accoutte seen, the duality gap is closing each step along the way as
during the tuning process, then a "good” tuning tool will sizedesired. This behavior was observed in all of our experiments.
in such a way that many of the outputs end up having the sameln Table Ill, the ‘optimize delay’ columns show the maximum
critical arrival time in the end. This in turn creates a high probadelay before and after tuning, with only timing involved in the
bility that the final delay value (subject to process variation) wilbbjective function §; =1, as=c:3=0). All transistors have a nom-
differ from that calculated via static timing analysis, since aninal V; value of 0.18V. After obtaining the best possible delay



value from sizing optimization alone, we then try to optimize

the total power consumption subject to that same delay value. B S S
Hence, the solution obtained from tuning the power consumption ]
is guaranteed to have a critical path delay not exceeding the cor-
responding delay value shown in the ‘optimize delay’ column. :
For power tuning, the dynamic and leakage power terms were ar- I /_D_T.; ]
bitrarily assigned equal weights. The resulting optimized-power LA
solution from tuning both the transistor width ang &e shown sol— :
in the ‘optimize total power’ columns. Compared to the power
consumption of the circuit with delay-tuning only, this shows
an average of 58% impro\/ement in total power reduction. THa9. 5 Effect F)f val_'ying the number d¥; levels available on the potential of
table also shows that LARTTE exhibits linear runtime and men®°e" reduction with LARTTE

ory usage requirement (see Figure 4 as well). Lastly, we show

in the table the leakage power consumption before and after V

discretization. As expected, the discretized solution is always

inferior to the original solution. However, it can be seen that thi&y before and after re-invoking LARTTE with the process varia-

suggests that with 4 levels df;, available, the discretization times before and after re-tuning. As it can be seen, LARTTE suc-
heuristic works reasonable well. This is also shown through Figessfully creates a distance separation between these two value:
ure 5, which analyzes the degree of power reduction which cafer re-tuning. We also show the relationship betwgisvalue
be achieved as a function of the numbeigg available for use. and the resulting max frequency in Fig. 6(a). For the circuit
To gauge the effectiveness and runtime of LARTTE, we use§1908) in that figure, it can be seen that increasing the value
a state-of-the-art, general convex problem solver in SNOPT & 7 bumps up the final critical delay value and decreases the
solve the same primal problem (with discretization as well). Th@aximum operating frequency. However, as the critical delay
runtime results are tabulated in Table 11, where it can be sed@lue rises, the number of ‘potential’ delay-violating paths di-
that our LR method is over 250x faster. Furthermore, we verifid@ctly decreases. A ‘potential path’ was arbitrarily defined as any

within 1% in all cases. nal critical delay value. The tradeoff between max frequency

and final delay variation probability is clear from this figure. Fi-
nally, for completeness, we also show the tradeoff between max
frequency and total circuit area in Fig. 6(b). Area was calculated
by summing all transistors’ widths.
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Fig. 3. The convergence sequence for a 12-bit ALU and controller.
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VI. CONCLUSION
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In this paper, we presented a novel, effective, and fast way to

(a) (b) perform simultaneous gate-sizing and multi-&ssignment us-
Fig. 4. The (a) runtime and (b) storage requirements of LARTTE vs. number of'9 Lagrangw_;\n Relaxat|on Qnd posynomial moplellng. We made
variables. the key contribution of showing that a posynomial-based LR ap-

proach is generalized and accurate. Our technique is practical
and versatile, as it can be used for both custom and ASIC design
We next investigate LARTTE'’s effectiveness of guardindglow (with gate-size discretization). We also showed an easy way
against final delay variation. Amvalue of 0.5 was used in all of to modify the tuning algorithm to directly take process variation
our tests. Shown in Table IV are all the circuit’s critical-path deinto account.



[1]

(2]

TABLE IlI

RESULTS OF OPTIMIZATION ONISCAS’85BENCHMARK CIRCUITS USING4 LEVELS OF V¢

Circuit # of # of # of Optimize Delay (ps) Optimize Total Power (0.1mW) Leakage Power Memory
Name Gates Var. Constr. Min. size Sizing % Sizing Sizing % Runtime (s) Speed Before After (MB)
nom.-Vy nom.-Vy nom.-Vy multi-Vy SNOPT LARTTE up Discretize Discretize
c432 214 654 473 1620 1230 24.1 1.25 0.59 52.9 31 5 5.9 7.66e-6 7.67e-6 1.0
c499 514 1716 1059 1060 895 15.6 3.49 1.46 58.3 290 10 29.7 1.71e-5 1.74e-5 1.5
€880 383 1665 987 1070 872 18.5 3.41 1.35 60.4 341 42 8.1 1.90e-5 1.91e-5 15
c1355 546 1908 1227 1070 914 14.6 5.62 2.93 47.9 269 9 29.7 4.43e-5 4.47e-5 1.5
1908 880 3315 1781 1500 1220 18.7 7.22 3.07 57.5 1316 57 23.0 4.21e-5 4.24e-5 25
2670 1193 5397 2903 1860 1520 18.3 10.7 4.09 61.9 7915 107 74.0 3.93e-5 3.95e-5 3.5
3540 1169 7446 3824 2170 1800 17.1 14.7 6.02 58.9 20773 222 93.6 5.44e-5 5.48e-5 4.5
5315 2307 10656 5932 1900 1590 16.3 19.8 8.42 57.4 64424 330 195.2 9.28e-5 9.32e-5 6.0
6288 2416 8016 5120 6070 5170 14.8 15.8 4.66 70.4 25326 299 84.7 1.85e-5 1.89e-5 5.0
C7552 3512 15198 8011 1520 1250 17.8 27.8 12.6 54.6 117067 431 271.6 1.35e-4 1.36e-4 8.5
TABLE IV

DELAY SEPARATION BEFORE ANDAFTER RE-TUNING WITH PROCESSVARIATION MODIFICATIONS

Before Re-Tuning

After Re-Tuning

Circuit Name Critical Delay (ps) Nearest Delay (ps)

Critical Delay (ps) Nearest Delay (ps)

C432 1230 1165

1279 1165

C499 895 889

968 890

C880 872 847

924 847

C1355 914 914

994 914

C1908 1220 1207

1312 1204

C2670 1520 1519

1593 1520

C3540 1800 1784

1921 1786

C5315 1590 1561

1703 1558

C6288 5170 5170

5582 5170

C7552 1250 1248

1362 1249
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