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Abstract— In this paper, we propose a novel method for fast and
effective gate-sizing and multipleVt assignment using Lagrangian
Relaxation (LR) and posynomial modeling. Our algorithm opti-
mizes a circuit’s delay and power consumption subject to slew rate
constraints, and can readily take process variation into account. We
first use SPICE to generate accurate delay and power models in
posynomial form for standard cells, then formulate a large-scale,
convex optimization problem based on these models. Finally, we
perform LR to solve for the globally-optimal1 set of transistor sizes
and Vts (with discretization) for each gate. Our key contribution is
that we show for the first time that using posynomial models, LR-
based circuit tuning can be carried out in a ”generalized” or non-
Gauss-Seidel manner for improved accuracy. Experimental results
show that our implemented tuning tool, LARTTE, exhibits linear
runtime and memory usage requirement, can effectively tune a cir-
cuit with over 15,000 variables and 8,000 constraints in under 7
minutes, and can minimize the probability of final delay variation
by introducing a margin of separation between the worst output
arrival time and all other outputs’ arrival times.

I. I NTRODUCTION

With the continuous scaling of CMOS technology and prob-
lem size/complexity explosion, the task of circuit or transistor-
level tuning (for delay, power, noise, etc.) can be extremely time-
consuming and even overwhelming for today’s designers. In past
works [1] [2], it was shown that the method of Lagrangian Re-
laxation (LR) can be used to solve the circuit tuning problem
efficiently and effectively. However, there are several flaws with
these earlier works, such as the lack of power consumption con-
sideration as well as the use of the simple-yet-inaccurate Elmore
delay model. Furthermore, as the magnitude of leakage power is
quickly catching up to that of dynamic power [3], the important
task of using multipleVt levels in a design [4] [5] for leakage
power reduction must be addressed in the circuit tuning process.

As CMOS scales into nanometer technology, another problem
that must be dealt with in the tuning process is on-chip process
variation [6]. From device geometry to device parameters, many
things can vary to cause the final critical delay value to differ
non-trivially from that calculated via static timing analysis. This
in turn makes yield rate estimation difficult. This problem is es-
pecially severe in the case of a circuit after automated transistor

1Optimality is with respect to the posynomial approximation-based optimiza-
tion problem, without discretization.

size tuning, since a well-tuned circuit that neglects process vari-
ation during the tuning process typically exhibits a ”wall-like”
distribution in its primary outputs’ arrival times [7]. This is be-
cause to squeeze the most performance benefits out of sizing, a
standard tuner will size in such a way that most, if not all, of the
primary outputs’(PO) arrival times end up with equally critical
values. This exacerbates the issue of process variation and final
delay uncertainty.

In this paper, we propose a novel method to perform efficient
gate-sizing and multipleVt assignment using LR and posyno-
mial modeling. Our algorithm optimizes a circuit’s delay and
power consumption subject to slew rate constraints, and can
readily take process variation into account. We first use SPICE
to generate accurate delay and power models in posynomial
form [10] for standard cells, then formulate a large-scale, con-
vex optimization problem based on these models. Finally, we
perform LR to solve for the globally-optimal (with respect to
the posynomial-based optimization problem, without discretiza-
tion) set of transistor sizes andVts (with discretization) for each
gate. Our main contribution is that we show for the first time that
LR-based circuit tuning can be carried out in a ‘generalized’ or
non-Gauss-Seidel manner. In previous works, the Elmore delay
model was used in the LR framework, which consequently con-
strained the optimization flow to a serialized and ordered process
(more on this in Section III-E). Our posynomial-based approach
does not suffer from this limitation, and can thus tune much more
accurately and faster. Experimental results show that our imple-
mented tuning tool, LARTTE, exhibits linear runtime and mem-
ory usage requirement, can effectively tune a circuit with over
15,000 variables and 8,000 constraints in under 7 minutes, and
can minimize the probability of final delay variation by intro-
ducing a margin of separation between the worst output arrival
time and all other outputs’ arrival times. Experiments also show
that LARTTE compares favorably with SNOPT [11], a state-of-
the-art general-purpose optimization problem solver. LARTTE
is over 250x faster than SNOPT, but can achieve the same quality
of results.

This paper is organized as follows. Background and posyno-
mial modeling information are detailed in Section II, followed by
the main LARTTE algorithm description in Section III. Modifi-
cations to LARTTE to guard against process variation is detailed
in Section IV. Experimental results and concluding remarks fol-
low in Section V and Section VI.



II. PRELIMINARIES AND POSYNOMIAL MODELING

In this section, we first define the notations that we will be us-
ing throughout this paper. Then, we provide some background
information on posynomial functions and optimization problems
in general. Finally, we describe the method that we used to ac-
curately characterize the various attributes of a gate (ie delay,
dynamic power, leakage power, input slew, etc.) as posynomial
functions.

A. Notations

The following notations are used throughout this paper. Given
a combinational circuit, we first introduce two auxiliary nodes,
a sink and a source (see Figure 1). The sink has all of its fan-ins
from the primary outputs, and the source has all of its fan-outs
to the primary inputs. The nodes in the circuit are labeled in
reverse topological order, with the sink having the index of 0
and the source having the index of N (assume N total nodes).
Let input(i) andoutput(i) be the set of node indices that con-
nect directly to the input(s) and output(s) of nodei. DefineD
andG to be the set of primary inputs and internal gate compo-
nents in the circuit, respectively. Fori ∈ G, ai is the arrival
time at the output of gatei, Wgi

is the width of the NMOS and
PMOS (adjusted by aγ ratio),Vtni

andVtpi
are the NMOS and

PMOS threshold voltages,CLi
is the loading capacitance (ex-

pressed as a function of the widths of the loading gates), and
si is a designer-specified upper bound on the input slew rate of
gatei2. Let Ti, Di, Pdynamici

, andPleakagei
denote the input

slew rate, propagation delay, dynamic power, and leakage power
posynomial functions of gatei, respectively. Lastly, defineLwi

andUwi
to be the lower and upper bound ofWgi

, Ltni
andUtni

to be the lower and upper bound ofVtni , andLtpi
andUtpi

to be
the lower and upper bound ofVtpi

.
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Fig. 1. A combinational circuit.

B. Background: Optimization Problems and Posynomial Func-
tions

In general, optimization problems [12] have the form:

minimize f0(x)

subject to gi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , n (1)

wherex ∈ �n is a n-vector of optimization variables andf0,
gi, andhi are the objective function, inequality constraints, and

2For simplicity of presentation,ai andsi are assumed to be the same for both
the rising and the falling transition.

equality constraints, respectively. Iff0, gi, andhi are all con-
vex functions, then the problem becomes a convex optimiza-
tion problem. An important property of the convex optimization
problem is that any locally-optimal solution is also guaranteed
to be globally optimal.

A posynomial function has the form:

f(x) =
k∑

j=1

cjx
α1j

1 x
α2j

2 . . . x
αnj
n (2)

wheref is a real-valued function whose domainx ∈ �n is
non-negative,cj ≥ 0, andαij ∈ �. A posynomial is a sum
of monomials. It is well-known [10] that under a simple expo-
nential transformation, a posynomial function can be converted
into a convex function. Hence, if an optimization problem is
expressed in terms of posynomial functions, then a global min-
imum can be easily found by searching for a local minimum,
which can be done with any formal mathematical programming
technique [12]. Thus, this is the main motivation in this work for
using posynomials to model gate characteristics.

C. The Posynomial Modeling Procedure

The posynomial modeling procedure is essentially done via
least-square regression analysis on SPICE simulation data. For-
mally, we define the posynomial parametric regression problem
as follows:

Posyfit: minimize
m∑

i=1



((

k∑
j=1

cjx
α1j

1i x
α2j

2i . . . x
αnj

ni

)
− bi

)2



subject to cj ≥ 0 (3)

wherex ∈ �m×n corresponds to m different sets of a n-vector
of tunable parameter values,b ∈ �m is a vector of m differ-
ent SPICE-simulated scalar results (each corresponding to one
unique simulation run under the associated tunable parameter
values in x), and k,c ∈ �k, andα ∈ �k×n are the unknown
parameters that we are trying to determine. The value of m
is user-defined and corresponds to the number of SPICE sim-
ulations that will be run to generate the necessary bi values for
posynomial-fitting. In general, a higher m leads to a greater ac-
curacy in the final characterized posynomial, but in turn requires
a longer pre-processing time (as SPICE simulations are inher-
ently time-consuming). The value of n is the number of tunable
parameters which affect the metric being approximated. For ex-
ample, if the delay posynomial form is being determined, then n
equals 5, for the delay of a gate depends on Wg

3, CL, Vtn, Vtp,
and s (input slew rate).

The posynomial-fitting procedure works as follows. First, we
select m different sets of n-tunable parameter values and simu-
late each individually to find m different bi values. Then, af-
ter plugging these terms back into equation 3, we are left with
3 unknowns, k, c, andα. To solve for these, we first guess a
value for the vectorα and its dimension k. Then, usingα and k,
we solve for the last remaining unknown, c, using CFSQP [13],
a general-purpose unconstrained problem solver. If the result-
ing least-square value using the solved c is below an error toler-
ance level, we stop and return the characterized posynomial form

3Size of NMOS. The PMOS width is adjusted by aγ value. For ease of
presentation, this is not shown in this paper.



(the inner summation term). Otherwise, we repeat the fitting-
procedure for a different guess ofα and k, and continue to do so
until the least-square error is minimized.

To avoid excessive trial count in guessing the posynomial
form, we employ the following heuristic when trying to find the
right k, c, andα. First, we guess a dominant monomial term by
exploiting well-known dependence relationships. For example,
for the delay posynomial, we start with a term that hasW−1

g and
C1

L, since we know in general that the delay of a gate depends on
its loading capacitance and its drive strength. Then, based on the
resulting fitting error using this guess, we gradually adjust the
power coefficients appropriately and add more monomial terms
into the posynomial equation until we find a reasonably accurate
approximation.

We give the following example to more clearly illustrate the
posynomial-fitting procedure. Suppose that we are trying to de-
termine the delay posynomial of a particular gate, say a CMOS
inverter. Then, let m=2 and pick the following two sets of
tunable parameter values:{Wg=3, Vtn=0.7, Vtp=0.7, CL=5,
s=0.5} and{Wg=4, Vtn=0.9, Vtp=0.8, CL=2, s=0.7}. Next, we
simulate in SPICE the delay of an inverter under these two sets
of parameters, and call the results b1 and b2. Assume for this
example that b1=15 and b2=10. Given these data, the Posyfit
problem is reduced to the following:

minimize

((
k∑

j=1

cj3
α1j 0.7α2j 0.7α3j 5α4j 0.5α5j

)
− 15

)2

+

((
k∑

j=1

cj4
α1j 0.9α2j 0.8α3j 2α4j 0.7α5j

)
− 10

)2

+

subject to cj ≥ 0 (4)

It should be noted that the k, c, andα values are required to
be the same across all m copies of the inner summation term,
since we are trying to determine a posynomial model that would
be accurate for any set of parameter values. With the reduced
Posyfit problem, we can then carry out the iterative fitting proce-
dure to find the unknown parameters (k, c, andα), and thus the
delay posynomial function, for the inverter. The returned posyn-
omial is expressed as a function of Wg, Vtn, Vtp, CL, and s. For
illustration purpose, the following is the actual inverter delay
posynomial form found in this work: Dinv(Wg,Vtn,Vtp,CL,s)
= 0.39VtnV−1

tp + 2.14W−1
g CLVtp + 623V0.5

tp W0.5
g + 12.2V3

tn +
29W0.5

g V−1
tn V0.5

tp + 0.14s0.5 + 1.07W−1
g CLV2

tnV−1
tp .

In this work, we set the stopping criteria of the fitting proce-
dure to be when 90% of the fitting samples, using the guessed
posynomial form, agree numerically to within± 10% of their
corresponding SPICE results. Also, when generating the SPICE
values, we assumed the worst case conditions (ie. for delay sim-
ulations, the input signal to the last transistor in the stack is set to
arrive last, etc). Table I shows the model-fitting error mean and
standard deviation for the characterized gates. Prefixes Inv, Na,
and No in the table represent inverter, NAND, and NOR gates,
and suffixes TP, PL, and PD represent delay, leakage, and dy-
namic power respectively. The unit for the entries in the table
is the % difference (in either direction) between the samples’
values using the final posynomial form and their corresponding
SPICE results. For example, the leakage power posynomial of
an inverter (InvPL) has a mean fitting error of 2.6%, and a stan-
dard deviation of 5.6%. For illustration purpose, the fitting error

TABLE I
MODEL FITTING ERROR MEAN AND STANDARD DEVIATION

Gate Mn. Dev. Gate Mn. Dev. Gate Mn. Dev.

InvPD -0.1 3.5 Na6TP -0.2 4.7 No4PL -2.7 6.0
InvPL -2.6 5.6 Na7PD -0.2 4.4 No4TP -0.1 3.2
InvTP -0.1 2.5 Na7PL -0.1 1.8 No5PD -0.1 2.1
Na2PD -1.2 6.5 Na7TP -0.2 4.8 No5PL -0.0 1.8
Na2PL -0.0 1.6 Na8PD -0.2 4.5 No5TP -0.2 4.7
Na2TP -0.1 3.4 Na8PL -0.0 1.8 No6PD -0.1 2.2
Na3PD -0.4 6.7 Na8TP -0.3 4.9 No6PL -2.7 6.1
Na3PL -0.0 1.8 Na9PD -0.2 4.9 No6TP -0.1 3.2
Na3TP -0.2 4.2 Na9PL -0.0 1.9 No7PD -0.1 2.3
Na4PD -0.3 5.6 Na9TP -0.3 5.1 No7PL -2.8 6.5
Na4PL -0.0 1.8 No2PD -0.8 6.6 No7TP -0.1 3.0
Na4TP -0.2 4.5 No2PL -2.5 5.4 No8PD -0.1 2.4
Na5PD -0.2 4.9 No2TP -0.1 3.2 No8PL -2.8 5.6
Na5PL -0.0 1.8 No3PD -0.7 6.3 No8TP -0.1 3.0
Na5TP -0.2 4.7 No3PL -2.6 5.6 No9PD -0.1 2.6
Na6PD -0.2 4.5 No3TP -0.1 2.9 No9PL -2.8 5.5
Na6PL -0.0 1.8 No4PD -0.2 4.5 No9TP -0.1 3.1

distribution for a NAND6 is also given in Figure 2. The unit for
the x-axis in these figures is again the % difference.
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Fig. 2. Model-fitting error distribution for a NAND6 gate.

III. POSYNOMIAL-BASED LAGRANGIAN RELAXATION

In this section, we derive a generalized Lagrangian Relaxation
tuning algorithm which incorporates the use of posynomial delay
and power models. The section is organized as follows. In III-A,
we formally formulate the circuit tuning optimization problem,
or the Primal Problem (PP). III-B introduces the Lagrangian
Subproblem,LRS/λ. III-C states the first-order KKT condi-
tion which will be used in our algorithm to significantly speed
up the tuning process. III-D outlines the Lagrange Multiplier
adjustment scheme used in this work, while III-E describes the
method by whichLRS/λ can be solved optimally, efficiently,
and accurately in a generalized manner. This will in turn solve
our original problem (PP) as well. Finally, in III-F, we discuss
the necessary post-tuning Vt discretization heuristic as well as
give a summary of LARTTE.

A. Primal Problem Formulation

In general, the problem of minimizing the maximum delay
and power consumption (dynamic + leakage) subject to arrival
time and slew constraints can be formulated as a large-scale,
nonlinear programming problem. We call the following the Pri-



mal Problem (PP):

PP : minimize α1a0 + α2Pleakage(Wg, V tn, V tp, s)

+ α3Pdynamic(Wg, CL, V tn, V tp, s)

subject to aj ≤ a0, j ∈ input(0)

aj + Di ≤ ai, i ∈ G ∩ ∀j ∈ input(i)

Di ≤ ai, i ∈ D
Ti ≤ si, i ∈ (D ∪ G)

Lwi ≤ Wgi ≤ Uwi , i ∈ G
Ltni ≤ Vtni ≤ Utni , i ∈ G
Ltpi

≤ Vtpi
≤ Utpi

, i ∈ G (5)

whereα1, α2 andα3 are the normalized weighting factors to
the maximum delay of the circuit,a0 (arrival time of the artifi-
cial sink node), total leakage power,Pleakage, and total dynamic
power,Pdynamic

4. The sum ofα1, α2, andα3 is 1. The weight-
ing factors are user-assigned based on the operating condition of
the target application, such as how much time spent in idle mode,
how critical is the timing of the design, etc. (Alternatively, a
more sophisticatedα assignment scheme could be applied, ie.
iteratively invoking LARTTE and adjusting theα factors along
the way based on the previous iteration’s tuned results). For all
other notations, see Section II-A.

From simple rearrangement, equation 5 can be transformed
into the following:

minimize α1a0 + α2Pleakage(Wg, V tn, V tp, s)

+ α3Pdynamic(Wg, CL, V tn, V tp, s)

subject to
aj

a0
≤ 1, j ∈ input(0)

aj + Di

ai
≤ 1, i ∈ G ∩ ∀j ∈ input(i)

Di

ai
≤ 1, i ∈ D

Ti

si
≤ 1, i ∈ (D ∪ G)

LwiW
−1
gi

≤ 1, WgiU
−1
wi

≤ 1, i ∈ G
LtniV

−1
tni

≤ 1, VtniU
−1
tni

≤ 1, i ∈ G
Ltpi

V −1
tpi

≤ 1, Vtpi
U−1

tpi
≤ 1, i ∈ G (6)

In general,PP is not in the form of a convex optimization
problem. However, posynomials can be readily transformed into
convex form by the following simple exponential transformation
of the variables [10]: Letx represent the vector of all tunable pa-
rameters, and transform each entryxi in x to a new variableyi,
wherexi = eyi . Now, y represents the vector of tunable param-
eters, and it is substituted into thePP equation for x to form a
convex optimization problem. Applying LR to the transformed
PP will give us an optimal solution in terms of y, but we can
easily recover the desiredxis by exponentiating theyis.

B. Lagrangian Relaxation with Logarithmic Transformations

From PP, after making the necessary exponential variable
transformations (to both the posynomials as well as the arrival
time terms), the next step is to make a Logarithmic transforma-
tion5 on the non-simple constraints by taking the natural log of

4For simplicity of presentation, the activity factor is not shown in the param-
eter list of thePdynamic term because it is not a tunable parameter.

5We perform the Logarithmic transformation because empirically, we found
that it resulted in exceptional runtime improvement.

both sides. Since the logarithmic function is monotonically in-
creasing, this can be done without affecting the final result. The
newly transformed problem is the following:

minimize α1e
a∗
0 + α2P

∗
leakage(Wg, V tn, V tp, s)

+ α3P
∗
dynamic(Wg,CL, V tn, V tp, s)

subject to ln (
ea∗

j

ea∗
0
) ≤ 0, j ∈ input(0)

ln (
ea∗

j + D∗
i

ea∗
i

) ≤ 0, i ∈ G ∩ ∀j ∈ input(i)

ln (
D∗

i

ea∗
i
) ≤ 0, i ∈ D

ln (
T ∗

i

es∗
i
) ≤ 0, i ∈ (D ∪ G)

Lwi
W−1

gi
≤ 1, Wgi

U−1
wi

≤ 1, i ∈ G
Ltni

V −1
tni

≤ 1, Vtni
U−1

tni
≤ 1, i ∈ G

Ltpi
V −1

tpi
≤ 1, Vtpi

U−1
tpi

≤ 1, i ∈ G (7)

where parameters with a∗ superscript represent those after an
exponential change of variable.

From equation 7, we can form the general Lagrangian func-
tion [12] by introducing non-negative Lagrange multipliers to re-
lax each arrival time and slew constraint into the objective func-
tion. Simple bounds on the transistor widths andVts are not
relaxed. For example, forj ∈ input(0), let λA

j0 denote the mul-

tiplier for the constraintln( e
a∗

j

ea∗
0
) ≤ 0. Fori ∈ G∩∀j ∈ input(i),

let λA
ji denote the multipliers for the constraintln( e

a∗
j +D∗

i

ea∗
i

) ≤ 0,

and fori ∈ (D ∪ G) ∩ ∀j ∈ input(i), let λS
ji denote the multi-

pliers for the constraintln( T∗
i

es∗
i
) ≤ 0. For i ∈ D, let λA

mi denote

the multipliers for the constraintln( D∗
i

ea∗
i
) ≤ 0. Finally, letλ be

the vector of all the multipliers introduced. Then, the general
Lagrangian function can be written as:

L(Wg, V tn, V tp, a, s, λ) = α1e
a∗
0 + α2P

∗
leakage(Wg, V tn, V tp, s)

+ α3P
∗
dynamic(Wg, CL, V tn, V tp, s)

+
∑

j∈input(0)

λA
j0 ln

(
ea∗

j

ea∗
0

)

+
∑
i∈G

∑
j∈input(i)

λA
ji ln

(
ea∗

j + D∗
i

ea∗
i

)

+
∑

i∈(D∪G)

∑
j∈input(i)

λS
ji ln

(
T ∗

i

esi

)

+
∑
i∈D

λA
mi ln

(
D∗

i

ea∗
i

)
(8)

The Lagrangian relaxation subproblem associated with a par-
ticular fixed Lagrange multiplier valueλ (LRS/λ) is:

LRS/λ : minimize Lλ(Wg, V tn, V tp, a, s)

subject to LwiW
−1
gi

≤ 1, WgiU
−1
wi

≤ 1, i ∈ G
LtniV

−1
tni

≤ 1, VtniU
−1
tni

≤ 1, i ∈ G
Ltpi

V −1
tpi

≤ 1, Vtpi
U−1

tpi
≤ 1, i ∈ G (9)

From the theory of the Lagrangian function, it is known that
there exists a vector value ofλ for which the optimal solution



of LRS/λ is equal to the optimal solution of the originalPP
problem. Hence, if we can find thisλ value, then we can find the
optimal solution to the original problem (by solvingLRS/λ).

Before we discuss our strategy for finding the correctλ value,
we first present a key part of our algorithm which is largely re-
sponsible for the excellent runtime of LARTTE.

C. First-Order KKT Necessary Condition For The Lagrangian
Function Solution

For a given Lagrangian function that we are interested in solv-
ing, The theory of the Lagrangian tells us that for a particu-
lar vector valueλ to be the correct, optimal solution multiplier,
the first-order Kuhn-Karush-Tucker (KKT) necessary condition
must hold. Under the first-order KKT condition, the gradient
of the Lagrangian function with respect to all variable param-
eters must be equal to 0. That is,∇W∗

gi
Lλ=0, ∇V ∗

tni
Lλ=0,

and∇V ∗
tpi

Lλ=0 for 1 ≤ i ≤ NG+PO. Also,∇a∗
i
Lλ=0 and

∇s∗
i
Lλ=0 for 1 ≤ i ≤ PI+NG+PO. Therefore, in trying to

find out what the correct, optimal multiplier valueλ should be,
we need only consider cases where the above conditions are sat-
isfied. This ‘filtering’ process is the key to dramatic runtime
reduction.

By taking ∇a∗
i
Lλ=0 and∇s∗

i
Lλ=0 to the Lagrangian, we

obtain the following required optimality condition on the arrival
time and slew constraint multipliers:∑

j∈input(0)

λA
j0 = α1e

a∗
0

∑
j∈input(i)

λA
ji =

∑
k �=0∈output(i)

λA
ik · ea∗

i

ea∗
i + D∗

k

, i ∈ (D ∪ G)

∑
j∈input(i)

λS
ji =

∑
k �=0∈output(i)

(
λA

ik

ea∗
i + D∗

k

∂D∗
k

∂s∗i
+

λS
ik

T ∗
k

∂T ∗
k

∂s∗i

)

+ α2

∂P ∗
leakage

∂s∗i
+ α3

∂P ∗
dynamic

∂s∗i
, i ∈ (D ∪ G) (10)

Note that each line in 10 applies to an individual set of com-
ponents ofλ and is independent to the other lines. For example,
if a particular vector valueλ∗ is to be deemed a candidate for
the correct, optimal multiplierλ, then all of its outgoing primary
output (PO) multiplier components must sum up to beα1e

a∗
0 .

Furthermore, for all gates inD ∪ G, all of their incoming multi-
pliers (from fan-in gates) must sum up to their outgoing multipli-

ers (multiplied by ea∗
i

ea∗
i +D∗

k

). In considering only those values of

λ∗ which satisfy equation 10 as solution candidates for the cor-
rect, optimal multiplierλ, our tuning process can significantly
cut down on runtime by avoiding unnecessary computation in-
volving impossibleλ candidates.

Using equation 10, we now present our method for solving
for the correct, optimalλ value (and consequently the optimal
solution of our original problem as well).

D. Iterative Multiplier Adjustment for Determining Optimalλ

We employ an iterative, modified sub-gradient method for
finding the desiredλ vector. First, we arbitrarily pick a start-
ing lambda value which satisfies equation 10. For example, we

can start by assigning each of theλA
j0 to be α1ea∗

0

N , where N
is the number of inputs to sink node 0. The assignment of all

other multiplier components can be done in a similar manner
(in reverse topological order). After forming an initialλ∗ guess,
we then iteratively updateλ∗ using a modified sub-gradient ap-
proach shown in Table II, line 3, to form a new guess at every it-
eration.θk is a step size value which is initialized to 1 and gradu-
ally updated over iterations using a Trust-Region approach [14].
We continue to iterate and make new guesses for the correct, op-
timal value ofλ until our LRS/λ∗ value converges to that of
the PP value. When this occurs, we will have found our desired
multiplierλ, which is just equal to theλ∗ at the stopped iteration.

E. SolvingLRS/λ in a Generalized Manner

Our LARTTE algorithm terminates when the solution of
LRS/λ converges to that ofPP. In order to do this, we must
have a method for solvingLRS/λ for the optimal (with re-
spect to the givenλ) tunable parameter vector, x. In previous
works [1] [2], due to the use of the Elmore delay model, this
procedure had to be carried out in a Gauss-Seidel-like or serial-
ized manner. The reason is as follows. In the Elmore model, the
delay at a node is characterized as a function of the resistance
and capacitance values along the path, not as a function of the
tunable parameters in the circuit (specifically, the widths of the
gates). Therefore, the process of solving for the tunable vector
x in LRS/λ cannot be done in one single iteration (in a gener-
alized manner). This is why in [1] and [2], the authors resorted
to a greedy, serialized approach, where the tunable parameters
(xis) are solved in topological order and one-at-a-time so that af-
ter solving for onexi, its corresponding downstream resistance
and capacitance values can be updated appropriately for the next
gate’sxi to be solved correctly. The order-dependent and serial
nature of this solving-procedure makes the tuning process inac-
curate and time-consuming, and this is the key drawback to these
previous works.

In this work, we overcome the above drawback by using
posynomial-based models in the LR framework for the first time.
Since the posynomials are characterized with respect to only
the tunable parameters of the circuit,LRS/λ is expressed com-
pletely in terms of x, and the entire problem can be solved opti-
mally in a generalized manner (in one single iteration) using any
formal mathematical programming technique. Thus, the serial-
ization/order restriction is removed entirely in our posynomial-
based method, leading to a much more accurate and faster tuning
process. The accuracy, efficiency, and elegance of our gener-
alized solving-procedure is the key to LARTTE’s performance,
and is the main contribution of this work.

We resort to an off-the-shelf solver in L-BFGS-B [15] to solve
LRS/λ. L-BFGS-B implements the well-known, Limited-
Memory BFGS method [12], which has been proven to be ex-
ceptional for handling large-scale, unconstrained problems. This
method belongs to the class of quasi-Newton methods, which
uses a Hessian approximation of the objective function (instead
of the exact Hessian) to compute the Newton search direction for
the minimum. However, unlike the standard BFGS method, the
Limited-Memory approach uses only the curvature information
from the most recent iterations to construct the Hessian approxi-
mation. This is beneficial for large problems whose Hessian ma-
trices cannot be computed at a reasonable cost or are too dense
to be manipulated easily. To avoid any confusion, we leave out



ALGORITHM LARTTE:
Output : optimal gate-sizing andVt allocation solution
1. k := 1 /* iteration number */

λ := arbitrary initial vector of constraint multipliers satisfying (10)
Initialize all optimization tunable parameters

2. SolveLRS/λ by calling L-BFGS-B to minimizeLλ(Wg, V tn, V tp, a, s, λ)
until optimal solution found and then computea1, . . . , aPI+NG+PO and
s1, . . . , sPI+NG+PO

3. /* Adjust multipliersλ */
for i := 0 to PI+NG+PO do

foreachj ∈ input(i) do

λNEW
ji :=




λA
ji ∗

(
e

a∗
j

e
a∗
0

)θk

if i = 0

λA
ji ∗

(
e

a∗
j +D∗

i

e
a∗

i

)θk

if i ∈ G

λA
ji ∗

(
D∗

i

e
a∗

i

)θk
if i ∈ D

λS
ji ∗

(
T∗

i

e
s∗

i

)θk
if i ∈ (D ∪ G)

ProjectλNEW
ji to the nearest point satisfying (10)

4. k := k + 1
5. Goto step 2 until the cost functions ofPP andLRS/λ converge to within

a specified tolerance
6. Discretize theVt solutions
7. SolveLRS/λ by calling L-BFGS-B to find the optimal solution

TABLE II
LARTTE ALGORITHM.

the internal details of this method and refer interested readers
to [12].

F. Vt Discretization and LARTTE Summary

Up to now, we have treatedVt as a tunable parameter in
�. This was done because LR is a technique for optimizing
continuously-differentiable problems. Obviously, this is a prob-
lem because in practice, there is usually only a limited number of
Vt levels available for use. Hence, in order to rectify this situa-
tion, we must discretize ourVt solutions in the end to the nearest
allowableVt value. For example, if we find that after tuning, one
of our transistors has an optimalVt solution value of 0.176V, but
we can only choose between a device with 0.24VVt and a de-
vice with 0.16VVt, then we would discretize this transistor’sVt

solution to be 0.16V instead. This discretization step is carried
out at the end of the tuning process for all transistors and their
correspondingVt solutions. If needed, the gate sizes can also be
discretized to suit an ASIC synthesis flow.

Since the discretization step is a heuristic, the qual-
ity/optimality of the solution after applying discretization seems
questionable at first. However, we have empirically found that
as long as the number ofVt levels available for use is around
4 or more, the solution after discretization will typically be not
too far off from the original, un-discretized solution (as it will
be shown in our experimental results section). Hence, our LR
technique is still reasonable under mild assumptions.

A summary of LARTTE is given in Table II.

IV. LARTTE WITH PROCESSVARIATION GUARD

Recall that if process variation were not taken into account
during the tuning process, then a ”good” tuning tool will size
in such a way that many of the outputs end up having the same
critical arrival time in the end. This in turn creates a high proba-
bility that the final delay value (subject to process variation) will
differ from that calculated via static timing analysis, since any

of the critical output’s arrival time can increase from variation.
Therefore, any chip yield rate projection that was done can end
up being highly inaccurate, which is undesirable. To improve
yield estimation accuracy, process variation (specifically final
delay variation) can be taken into account during the LARTTE
tuning process as follows: First, LARTTE is invoked normally
and the critical-path delay and its corresponding output pin is
recorded. Then, using this recorded information, the same criti-
cal output’s arrival time constraint is modified/relaxed to derive
a newPP formulation, which is then subsequently solved by
LARTTE again. Thus, we have the following:

minimize α1a0 + α2Pleakage(Wg, V tn, V tp, s)

+ α3Pdynamic(Wg, CL, V tn, V tp, s)

subject to aj ≤ a0, j ∈ input(0), j �= c

ac ≤ (1.0 + η)a0, c = critical PO, 0 ≤ η ≤ 1

aj + Di ≤ ai, i ∈ G ∩ ∀j ∈ input(i)

Di ≤ ai, i ∈ D
Ti ≤ si, i ∈ (D ∪ G)

Lwi ≤ Wgi ≤ Uwi , i ∈ G
Ltni ≤ Vtni ≤ Utni , i ∈ G
Ltpi

≤ Vtpi
≤ Utpi

, i ∈ G (11)

It can be seen from equation 11 that the only thing that has
changed from the originalPP formulation is that the old con-
straint on the original critical output has been modified/relaxed
by a user-specified ratio,η. This is done to explicitly introduce
a margin of separation between the most critical arrival time and
all other outputs’ arrival times. By doing so, the probability of
final delay variation can be minimized. The value ofη ranges
between 0 to 1, with a largerη leading to a greater margin of
separation.

V. EXPERIMENTAL RESULTS

We implemented LARTTE in C++ and ran all of our experi-
ments on a 1.0GHz P4 machine with 1.0Gb of RAM. The stop-
ping criterion of LARTTE was set to whenPP andLRS/λ
agreed to within 1.0%. Lower and upper bounds of the transistor
width were 0.2µm and 1.1µm, respectively. ForVt, the lower
and upper bounds were 0.14V and 0.26V.VDD was 1.0V. Input
slew ranged from 30ps to 150ps. FourVt levels were made avail-
able for discretization: 0.14V, 0.18V, 0.22V, and 0.26V. Appro-
priate activity factors were assigned to the posynomials through-
out the circuit using PowerMill. All SPICE simulations were
carried out in 0.1µm technology. We conducted our experiments
on the ISCAS85 benchmark circuits, where the number of gates
ranged from 214 to 3,512, and the total number of tunable pa-
rameters from 654 to 15,198. Table III shows the LARTTE op-
timization results. Only the Vts were discretized. To illustrate
the convergence property of LARTTE, we show in Figure 3 the
convergence sequence for a 12-bit ALU controller. As it can
be seen, the duality gap is closing each step along the way as
desired. This behavior was observed in all of our experiments.

In Table III, the ‘optimize delay’ columns show the maximum
delay before and after tuning, with only timing involved in the
objective function (α1=1,α2=α3=0). All transistors have a nom-
inal Vt value of 0.18V. After obtaining the best possible delay



value from sizing optimization alone, we then try to optimize
the total power consumption subject to that same delay value.
Hence, the solution obtained from tuning the power consumption
is guaranteed to have a critical path delay not exceeding the cor-
responding delay value shown in the ‘optimize delay’ column.
For power tuning, the dynamic and leakage power terms were ar-
bitrarily assigned equal weights. The resulting optimized-power
solution from tuning both the transistor width and Vt are shown
in the ‘optimize total power’ columns. Compared to the power
consumption of the circuit with delay-tuning only, this shows
an average of 58% improvement in total power reduction. The
table also shows that LARTTE exhibits linear runtime and mem-
ory usage requirement (see Figure 4 as well). Lastly, we show
in the table the leakage power consumption before and after Vt

discretization. As expected, the discretized solution is always
inferior to the original solution. However, it can be seen that the
drop in leakage savings is relatively trivial in all cases. This
suggests that with 4 levels ofVt available, the discretization
heuristic works reasonable well. This is also shown through Fig-
ure 5, which analyzes the degree of power reduction which can
be achieved as a function of the number ofVts available for use.

To gauge the effectiveness and runtime of LARTTE, we used
a state-of-the-art, general convex problem solver in SNOPT to
solve the same primal problem (with discretization as well). The
runtime results are tabulated in Table III, where it can be seen
that our LR method is over 250x faster. Furthermore, we verified
that our LARTTE solution agreed with the SNOPT solution to
within 1% in all cases.

0 20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 PP

 LRS/Lam bda

W
e
ig
h
te
d
 n
o
rm
a
liz
e
d
 o
b
je
ct
iv
e
 c
o
st

# of iterations

Fig. 3. The convergence sequence for a 12-bit ALU and controller.
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variables.

We next investigate LARTTE’s effectiveness of guarding
against final delay variation. Anη value of 0.5 was used in all of
our tests. Shown in Table IV are all the circuit’s critical-path de-
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Fig. 5. Effect of varying the number ofVt levels available on the potential of
power reduction with LARTTE

lay before and after re-invoking LARTTE with the process varia-
tion modifications. Also shown are the next closest output arrival
times before and after re-tuning. As it can be seen, LARTTE suc-
cessfully creates a distance separation between these two values
after re-tuning. We also show the relationship betweenη’s value
and the resulting max frequency in Fig. 6(a). For the circuit
(c1908) in that figure, it can be seen that increasing the value
of η bumps up the final critical delay value and decreases the
maximum operating frequency. However, as the critical delay
value rises, the number of ‘potential’ delay-violating paths di-
rectly decreases. A ‘potential path’ was arbitrarily defined as any
non-critical path whose final delay value is within 10% of the fi-
nal critical delay value. The tradeoff between max frequency
and final delay variation probability is clear from this figure. Fi-
nally, for completeness, we also show the tradeoff between max
frequency and total circuit area in Fig. 6(b). Area was calculated
by summing all transistors’ widths.
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VI. CONCLUSION

In this paper, we presented a novel, effective, and fast way to
perform simultaneous gate-sizing and multi-Vt assignment us-
ing Lagrangian Relaxation and posynomial modeling. We made
the key contribution of showing that a posynomial-based LR ap-
proach is generalized and accurate. Our technique is practical
and versatile, as it can be used for both custom and ASIC design
flow (with gate-size discretization). We also showed an easy way
to modify the tuning algorithm to directly take process variation
into account.



TABLE III
RESULTS OF OPTIMIZATION ONISCAS’85 BENCHMARK CIRCUITS USING4 LEVELS OF Vt

Circuit # of # of # of Optimize Delay (ps) Optimize Total Power (0.1mW) Leakage Power Memory
Name Gates Var. Constr. Min. size Sizing % Sizing Sizing % Runtime (s) Speed Before After (MB)

nom.-Vt nom.-Vt nom.-Vt multi-Vt SNOPT LARTTE up Discretize Discretize
c432 214 654 473 1620 1230 24.1 1.25 0.59 52.9 31 5 5.9 7.66e-6 7.67e-6 1.0
c499 514 1716 1059 1060 895 15.6 3.49 1.46 58.3 290 10 29.7 1.71e-5 1.74e-5 1.5
c880 383 1665 987 1070 872 18.5 3.41 1.35 60.4 341 42 8.1 1.90e-5 1.91e-5 1.5
c1355 546 1908 1227 1070 914 14.6 5.62 2.93 47.9 269 9 29.7 4.43e-5 4.47e-5 1.5
c1908 880 3315 1781 1500 1220 18.7 7.22 3.07 57.5 1316 57 23.0 4.21e-5 4.24e-5 2.5
c2670 1193 5397 2903 1860 1520 18.3 10.7 4.09 61.9 7915 107 74.0 3.93e-5 3.95e-5 3.5
c3540 1169 7446 3824 2170 1800 17.1 14.7 6.02 58.9 20773 222 93.6 5.44e-5 5.48e-5 4.5
c5315 2307 10656 5932 1900 1590 16.3 19.8 8.42 57.4 64424 330 195.2 9.28e-5 9.32e-5 6.0
c6288 2416 8016 5120 6070 5170 14.8 15.8 4.66 70.4 25326 299 84.7 1.85e-5 1.89e-5 5.0
c7552 3512 15198 8011 1520 1250 17.8 27.8 12.6 54.6 117067 431 271.6 1.35e-4 1.36e-4 8.5

TABLE IV
DELAY SEPARATION BEFORE ANDAFTER RE-TUNING WITH PROCESSVARIATION MODIFICATIONS

Before Re-Tuning After Re-Tuning
Circuit Name Critical Delay (ps) Nearest Delay (ps) Critical Delay (ps) Nearest Delay (ps)

C432 1230 1165 1279 1165
C499 895 889 968 890
C880 872 847 924 847
C1355 914 914 994 914
C1908 1220 1207 1312 1204
C2670 1520 1519 1593 1520
C3540 1800 1784 1921 1786
C5315 1590 1561 1703 1558
C6288 5170 5170 5582 5170
C7552 1250 1248 1362 1249
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