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ABSTRACT
This paper presents a fast algorithm to optimize both the
widths and lengths of power/ground networks under reliabil-
ity and power dip/ground bounce constraints. The space-
sizing which allows the length to change gives more flexi-
bility in solving practical problems. There are two major
contributions of this paper. First, we prove that for general
topology, a relaxed version of this problem is also convex.
Second, we present the sequential network simplex algorithm
which can solve those problems with extreme efficiency. Ex-
perimental results on several large scale problems, using a
PC with a 500-MHZ Pentium III processor, show that our
algorithm can solve problems with hundreds of thousands of
variables within a few minutes and has a speed improvement
of 25+ over sequential linear programming [1]. Experimen-
tal results also show that about 50% of the power delivery
area can be reduced using our algorithm.

1. INTRODUCTION
More than ever, accurate, high-frequency operation of in-
tegrated circuits, with smaller devices buried under an ex-
panding superstructure of interconnect layers, depends upon
advanced design in power delivery technology. To ensure the
quality of power delivery, advanced technologies of packag-
ing material and methods such as organic material, flip-chip,
and C4 bump technologies have been successfully deployed.
However, the relentless push for low power has driven sup-
ply voltage requirements below the 1 volt region while at the
same time increasing supply current requirements because
of increasing transistor counts. As a result, on-chip power
delivery needs to be significantly improved in order to fulfill
these stringent requirements.

There are several physical-design means to improve the qual-
ity of power delivery. Wire-sizing has been shown to be an
effective way to reduce the power dip/ground bounce as well
as improve the electrical migration [2], [3], [4], [5], [1]. Topol-
ogy optimization is another effective way to adjust the power
delivery network topology to fit the current supply pattern
[6], [7], [8].

There are several existing approaches to solve the wire-sizing
and topology optimization problem. The wire-sizing prob-
lem was formulated as a nonlinear programming problem
and solved by Augmented Lagrangian with Newton’s method
or the steepest descent method [2].

There are several difficulties involved in the wire-sizing and
topology optimization of power delivery networks. First,
the problem sizes are very large. For a 50 × 50 network,
the number of variables and constraints can easily exceed
millions. Second, this problem is non-convex in nature and
hence no existing mathematical programming algorithm can
guarantee optimality.

To tackle the above mentioned difficulties, a feasible direc-
tion method was developed to iteratively minimize the total
wire area [5]. The other approach used both the nodal volt-
ages and branch currents as variables, then divided the prob-
lem into two phases. The first phase reduces to a nonlinear
convex problem and can be solved by a conjugate gradient
solver. The second phase is a linear programming problem
and is easy to solve. The convex and linear characteristics
make this method much more attractive and easy to solve
more efficiently [4].

However, the constrained nonlinear programming problem
solved by the conjugate gradient method is actually too slow
for today’s VLSI design. The idea is to translate the con-
strained nonlinear programming problem into a sequence
of linear programming problems. This method was demon-
strated to be orders of magnitude faster than the best-known
method based on the conjugate gradient method [1].

This paper presents a fast algorithm to optimize both the
widths and lengths of power/ground network under reliabil-
ity and power dip/ground bounce constraints. The space-
sizing which allows the length to change gives more flexibil-
ity in solving the practical problem. There are two major
contributions of this paper. First, we prove that for general
topology, a relaxed version of this problem is also convex.
Second, we present a sequential network simplex algorithm
which can solve those problems with extreme efficiency.

We organize the remainder of this paper as follows. Section
2 gives an overview of the problem and formulates the prob-
lem. A new approach based on the network simplex method
is discussed in Section 3. Experimental results are presented
in Section 4, followed by the conclusion in Section 5.

2. PROBLEM FORMULATION
Consider a power/ground network G = {N, B} with n nodes
N = {1, ..., n} and b branches B = {1, ..., b} as shown in
Figure 1. It is assumed that the average current drawn in



each block is given. A leaf node connects an independent
current source which models the current drawn from the
block. Let Ii be the current in branch i with direction from
node i1 to node i2. The voltage level at node i is expressed
as Vi. Let ri, Li, and wi represent the resistance, length, and
width of branch i, respectively. In this paper, we suppose
that the width Li can be adjusted within a certain range.
The resistance can be expressed as follows:

ri = ρ
Li

wi

=
Vi1 − Vi2

Ii

, (1)

where ρ is the sheet resistivity.
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Figure 1: Power Grid

Then the area optimization problem is to minimize the to-
tal power/ground routing area in terms of voltages, currents,
and lengths of branches. The objective function can be ex-
pressed as follows:

F (V, I, L) =
∑

i∈B

Liwi =
∑

i∈B

ρIiL
2
i

Vi1 − Vi2
, (2)

and is subject to the following constraints in order to satisfy
the feasibility and reliability requirements of the power/ground
networks.

• The voltage drop constraints
On the power net, the voltage fluctuation from a power
pad to a leaf node must be restricted, and thus give a
lower bound on the voltage level. On the ground net,
similar restrictions will give an upper bound on the
voltage level. Thus the voltage constraints are

Vi∈L ≥ Vmin for power grid,

Vi∈L ≤ Vmax for ground grid, (3)

where L is the set of leaf nodes and Vmin and Vmax

are the given lower and upper bounds.

• The minimum width constraints
The minimum width of a branch is technologically re-
stricted by the metal layer on which the power/ground
lies. These constraints can be expressed as follows:

wi∈B =
ρLiIi

Vi1 − Vi2
≥ wmin, (4)

where wmin is the given minimum width.

• The electro-migration constraints
Electromigration is the transport of mass in metals
under the stress of high current density. This met-
allization failure is a reliability concern in IC design.
The lifetime of power/ground interconnects is modeled
by Black’s equation as shown below [9]:

MTF = AJ−2
avgexp(Ea/κT ) (5)

where Javg, Ea, κ, and T are average current density,
activation energy, Boltzman’s constant, and tempera-
ture, respectively. Therefore an upper bound on the
current density of each branch is required and can be
expressed as follows:

| Ii |

wi

≤ σ

or | Vi1 − Vi2 | ≤ ρσLi, (6)

where σ is the current density for fixed thickness.

• Kirchoff’s current law (KCL)
The currents in branches connected to a node are re-
stricted by Kirchoff’s current law.

∑

j∈N(i)

Ij = 0, (7)

where N(i) is the set of branches that are connected
to the node i.
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Figure 2: Length Constraints

• The length constraints
We allow the power/ground grid lines to move up and
down and left and right under certain ranges. How-
ever, the distances between pads are fixed as shown in
Figure 2. The length constraints can be expressed as
follows

Li,lower ≤ Li ≤ Li,upper, (8)

where Li,lower and Li,upper are given lower and upper
bounds of branch length Li. Since the distances be-
tween pads are fixed, the following constraints need to
be satisfied :

m
∑

i=1

Li = Lh,
n

∑

j=1

Lj = Lv, (9)



where m and n are the number of vertical and hori-
zontal power supply lines.

The formulated optimization problem is a nonlinear prob-
lem with nonlinear constraints with respect to variables Ii,
Vi, and Li. To solve this problem is complicated and com-
putationally inefficient. A relaxed optimization procedure
by dividing the problem into two phases was suggested [4].

2.1 Two-phase optimization procedure
First, get an initial feasible solution satisfying the constraints.
Then, divide the problem into phase one (PVL) and phase
two (PI).

• Phase one (PVL):
Assume that branch currents are fixed values, {Io

i },
but nodal voltages as well as branch lengths are vari-
ables. Then the objective function (2) can be ex-
pressed as follows:

fV L(V, L) =
∑

i∈B

ρIo
i L2

i

Vi1 − Vi2
. (10)

The constraints are subject to: voltage drop constraints
(3), electro-migration constraints (6), minimum width
constraints (4), and length constraints (8) and (9).
Note that the voltage drop across a branch, Vi1 − Vi2,
must have the same sign as the current direction Ii.
The constraints of PVL can be arranged as follows:

Vi ≥ Vmin or Vi ≤ Vmax

| Vi1 − Vi2 | ≤ ρσLi

Vi1 − Vi2

Io
i

≤
ρLi

wmin

Li,lower ≤ Li ≤ Li,upper

Vi1 − Vi2

Io
i

≥ 0. (11)

• Phase two (PI):
In this phase, let the nodal voltages and branch lengths
be fixed values, {V o

i , Lo
i }, but the branch currents be

variables. The fixed values of nodal voltages and branch
lengths are from the solutions of PVL. The objective
function can be rewritten as follows:

fI(I) =
∑

i∈B

ρLo
i
2Ii

V o
i1 − V o

i2

. (12)

The constraints are subject to: Kirchoff’s current law
(7) and minimum width constraints (4). Similarly, the
voltage drop across the branch must have the same
direction as the current flow.

∑

j∈B(i)

Ij = 0

Ii

V o
i1 − V o

i2

≥
wmin

ρLo
i

. (13)

2.2 A Linear Programming based Algorithm
PVL is a linear constrained nonlinear programming prob-
lem. An algorithm based on a sequence of linear programs
was suggested by [1] to replace the nonlinear programming

problem. Suppose that the initial feasible solution exists,
then take the Taylor’s expansion of the objective function
(10) around the point of initial feasible solution and keep
the constant and linear terms. The resulting linear objec-
tive function can be written as:

f(V, L) =
∑

i∈B

[
2ρIo

i Lo
i

V o
i1 − V o

i2

Li −
ρIo

i Lo
i
2

(V o
i1 − V o

i2)
2
(Vi1 − Vi2) ].

(14)

Now instead of minimizing the nonlinear function fV L, min-
imize the linear function f iteratively. Theoretically, the
sequence of linear programs always converges to an opti-
mal solution of the relaxed convex problem PVL. It has
been proved that there always exists a restriction factor ξ
such that the sequence of linear programming converges to
a global minimum [1]. The extra constraints required can
be expressed as:

Li ≥ ξLo
i

sign(Ii)(Vi1 − Vi2) ≥ ξsign(Ii)(V
o

i1 − V o
i2). (15)

In the next section, we will prove that the objective function
(10) is a convex function.

2.3 The Objective Function of PVL is Convex
The two-phase optimization procedure shown in Section 2.1
is the relaxed version of the original problem. The objective
function (10) in PVLis a function of Vi and Li, and it is
a convex function. The proof is shown as follows that a
relaxed version of the problem for general topology is also
convex.
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Figure 3: Convex function.

Proof: Suppose that C is a convex set of <n. A function
fLV : C → < is called convex if

fLV ((1− λ)x + λy) ≤ (1 − λ)fV L(x) + λfV L(y),

∀x, y ∈ C, ∀λ ∈ [0, 1].

Suppose that the objective function is fV L = L2

V
. At points

x, y, the functions are:

⇒ fV L(x) =
L2

1

V1
, fV L(y) =

L2
2

V2
.



(1− λ)fV L(x) + λfV L(y)− fV L((1− λ)x + λy)

= (1− λ)
L2

1

V1
+ λ

L2
2

V2
−

[(1− λ)L1 + λL2]
2

(1− λ)V1 + λV2

=
[(1 − λ)L2

1]
2

(1 − λ)V1
+

[λL2
2]

2

λV2
−

[(1 − λ)L1 + λL2]
2

(1 − λ)V1 + λV2

=
λ(1− λ)[L1V2 − L2V1]

2

V1V2[(1 − λ)V1 + λV2
] ≥ 0

Hence the objective function (10) with variables of lengths
and nodal voltages is convex. 2

A new approach based on the network simplex method will
be presented in the following section because of the convex
property of PVL.

3. A NEW APPROACH BASED ON THE NET-
WORK SIMPLEX METHOD

Motivated by the algorithm of the sequential linear program-
ming, a new approach based on the network simplex method
was used. The reason is that the simplex method is perhaps
the most efficient algorithm to solve a linearly constrained
linear programming problem. However, if the corresponding
minimum cost flow problem has network structure, it can be
solved by the network simplex method even faster.

The basic procedure of the sequential network simplex method
approach is described as follows. Repeat PVL and PI k
times until there is no improvement in the original objective
function (2). The solution of each iteration is denoted by xk.
Since we know that the objective function (10) is a convex
function, then we can repeat the following steps l times in
PVL and get a minimum solution. Note that the solution in
each subproblem, PVL, is denoted by xk

l . First linearize the
nonlinear objective function from (10) into (14), then trans-
late the linear programming problem into the format of a
network problem which can be solved by a network simplex
algorithm. In order to guarantee that the optimal solution
of a network simplex subproblem, (14) (11), is also a mini-
mum solution of the original problem, PVL (10) (11), we do
a line search at each iteration. Repeat the procedures sev-
eral iterations until there is no improvement in the objective
function (10). Then continue the PI problem.

3.1 Translate to Network Simplex Method
A network problem finds the minimum cost flow through a
network G = {N, B} which is defined by a set of n nodes,
N , and a set of b branches, B. A branch i in the set B is an
ordered pair (i1, i2) with the flow direction from tail i1 to
head i2. Then the network problem can be written in the
form:

Minimize :
∑

i∈B

cixi

Subject to :
∑

i∈Tn

xi −
∑

i∈Hn

xi = sn ∀ (n ∈ N)

Bounds : li ≤ xi ≤ ui ∀ (i ∈ B).

• ci is the cost per unit flow on the branch i.

• xi is the flow value passing through the branch i.
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Figure 4: Example of a Network problem

• Tn and Hn are the sets of branches whose tails and
heads are node n respectively.

• sn is the supply/demand value at node n.

• li, the lower bound, is the capacity that determines
the minimum flow passing through the branch i.

• ui, the upper bound, is the capacity that determines
the maximum flow passing through the branch i.

An example is shown in Figure 4.

The basic idea for the network simplex method [10] is the
spanning tree solutions. These solutions are found by fix-
ing the flow of each branch not in a spanning tree having
either zero value or flow capacity. For the network simplex
algorithm, the minimum cost flow problem always has at
least one optimal spanning tree solution. This solution can
be found by moving from one solution to another. A new
non-tree branch is introduced at each step into the spanning
tree to replace one tree branch.

The following procedures will describe how to translate the
original problem into a network problem. First we rewrite
the objective function (14) and constraints (11) in standard
form:

Minimize : z = pT x

Subject to : Ax ≥ b

Bounds : x ≥ 0. (16)

The vector x is xT = [LT , V T ], where L = {Li} and V =
{Vi} are variables and x ∈ Rn. The corresponding coeffi-

cient pT is
2ρIo

i
Lo

i

V o

i1
−V o

i2

or ±
ρIo

i
Lo

i

2

(V o

i1
−V o

i2
)2

. Each entry of matrix A

is the coefficient of Vi or Li in the constraints (11).

Then add non-negative slack variables xn+1, ..., xn+m to the
system in order to have equal signs in constraints. The new
vector xT is [x, xn+1, ..., xn+m]T and x ∈ Rl, where l =
n + m. The new matrix A is [A,−I] ∈ Rn×l, where matrix
I is the identity matrix. The vector pT is [pT , 0, ..., 0] and



p ∈ Rl. Then the canonical form can be expressed as:

Minimize : z = pTx

Subject to : Ax = b

Bounds : x ≥ 0. (17)

Note that the set {1, 2, ..., l} is separated into N = {1, 2, ..., n}
which corresponds to non-basic variables and B = {n +
1, ..., l} which corresponds to basic variables. The matrix
A·B = −I is called a basis matrix having the property
of invertibility. Note that some of the constraints in (11)
can be moved to bounds to simplify the constraints. For
example, the constraints Vi ≥ Vmin(or Vi ≤ Vmax) and
Li,lower ≤ Li ≤ Li,upper can be moved to the bounds. The
linear programming problem now turns out to be a network
problem, and can be solved by a network simplex method.

3.2 Line Search
Line search plays an important role in many algorithms for
solving a nonlinear programming problem. In our approach,
the original nonlinear problem is solved by a sequence of
network simplex subproblems. In order to guarantee that
the optimal solution of a simplex network subproblem is also
a local minimum of the original problem, a linear search is
needed at each iteration.

For a given point xk

l , find a direction vector dl and a suit-
able step size λl, which yields a new point xk

l+1 = xk

l +λldl.
Finding the step size λl involves solving the subproblem to
minimize fV L(xk

l +λdl), which is a one-dimensional search
problem in the variable λ. In our problem, xk

l+1 is the new
optimal solution of the network simplex method with itera-
tion l + 1.

Some of the sequential search procedures are available such
as dichotomous search, golden section method, and Fibonacci
method. We use the dichotomous search [11]. Consider the
objective function θ(λ) = fV L(xk

l +λdl) to be minimized
over the interval [a1, b1] = [0, 1]. Choose the distinguisha-
bility constant, 2ε > 0, and the allowable final length of
uncertainty, lu > 0. Let [a1, b1] be the initial interval of
uncertainty, then go to main steps as follows:

1. If bk − ak < lu, stop; the minimum point λk = λmin

lies in the interval [ak, bk]. Otherwise, consider λk and
µk defined below, and go to step 2.

λk =
ak + bk

2
− ε µk =

ak + bk

2
+ ε

2. If fV L(λk) < fV L(µk), let ak+1 = ak and bk+1 = µk.
Otherwise, let ak+1 = λk and bk+1 = bk. Replace k by
k + 1, and go to step 1.

After obtaining the minimum value of θ(λ), the point xk

l+1

will be replaced by xk

l +λmindl for the next iteration of the
network simplex method.

3.3 Algorithm
The sequential network simplex algorithm is described in
Table 1. Some remarks and descriptions are given below.

1. First analyze the network and get the initial values of
Lo, V o and Io for Lk, V k and Ik, respectively. Then
repeat PVL and PI k times.

2. Phase one (PVL):
Translate the problem into network format. For each
iteration k, do l iterations of the network simplex method
and line search until there is no improvement in fV L.
For each l which begins from 1, minimize the objec-
tive function (14) which is subject to constraints (11)
by the simplex network method. The optimal solution
(V k

l+1, L
k
l+1) is xk

l+1. Then do the line search and find

the corresponding solution as new (V k
l+1, L

k
l+1) for the

minimal solution.

3. Phase two (PI):
Substitute the values obtained from PVL for Vi and
Li. Minimize objective function (12) which is subject
to constraints (13) by simplex network programming.

4. Iteration k stops if | F (V k+1, Lk+1, Ik+1)−F (V k, Lk, Ik) |
≤ ε.

Sequential Network Simplex Algorithm

Begin
/ ∗ initial feasible solution ∗ /
V k ← V 0,Ik ← I0,Lk ← L0;

Repeat k

PVL:

Construct

{

min : f(V k, Lk, Ik
const) (14)

s.t. : (11)
;

l = 1;
xk

l = (V k
l , Lk

l );
Repeat l

Do optimization by simplex network method;
Optimal Solution:

xk
l+1 = (V k

l+1, L
k
l+1);

Do line search;
New Solution:

xk
l+1 = new (V k

l+1, L
k
l+1);

l← l + 1;
Minimal Solution:

xk
l ← xk

l+1;
until no improvement on fV L

PI:

Construct

{

min : fI (V
k

const, L
k
const, I

k) (12)
s.t. : (13)

;

Do optimization by simplex network method;
Ik ← Ik+1;

until | F (V k+1, Lk+1, Ik+1)− F (V k, Lk, Ik) | ≤ ε
End

Table 1: Algorithm for Power/Ground Optimization
based on Sequential Network Simplex Method

4. EXPERIMENTAL RESULTS
The power/ground optimization algorithm based on the se-
quential network simplex method was implemented. A set
of power/ground network circuits was tested on a PC with



Network Simplex Method Sequential Linear Programming
Ckt Nodes Bchs variable constraint time area variable constraint time area Speedup

# # # # (sec) reduced # # (sec) reduced

c3x3 16 24 46 84 1 54.96 % 40 52 1 50.00 % -
c5x5 36 60 106 204 1 53.01 % 96 124 1 50.00 % -

c10x10 121 220 361 704 1 51.46 % 341 444 2 50.00 % -
c20x20 441 840 2321 2604 3 50.75 % 1281 1684 18 49.98 % 6.00
c30x30 961 1860 2881 5704 28 50.43 % 2821 3724 245 49.97 % 8.75
c40x40 1681 3280 5041 10004 122 50.10 % 4961 6564 1186 49.96 % 9.72
c50x50 2601 5100 7801 15504 351 49.85 % 7701 10204 3609 49.56 % 10.28
c60x60 3721 7320 11161 22204 479 49.71 % 11041 14644 12374 49.53 % 25.83

Table 2: Comparison of the Network Simplex Method and Sequential Linear Programming

a 500-MHz Pentium III processor. The simulation program
was written with C++. The ILOG CPLEX callable library
was used to implement the linear programming.

Table 2 lists the names of the circuits, and the number of
nodes and branches in columns 1,2, and 3, respectively. The
circuit name, e.g., c50× 50 means the power grid is 50× 50.
The number of variables and constraints is shown for each
method. The runtime(time) is in seconds. The reduced chip
area is in comparison to the original area.

From the experimental results, the runtime of the network
simplex method for c60 × 60 circuit which has 11161 vari-
ables and 22204 constraints is 25.83 times faster than the
sequential linear programming algorithm. When the power
grid is bigger, the runtime of the network simplex method
is much faster than the sequential linear programming. On
a pure network problem, the performance can be 100 times
faster than the primal simplex method. However, it depends
on the problems that are designed.

The area reduced for all circuits comparing the original area
is about 50%, and it is strongly dependent on the initial
solution. For the network simplex method, it is capable
of sizing widths and lengths. The total lengths between
pads are constants, and the moving range for each node is
20 ∼ 30% around the original location. The algorithm we
proposed here can reduce the area slightly better than the
sequential linear programming algorithm. The limitation
comes from the power grid topology. However, it is much
flexible for practice problem.

5. CONCLUSIONS
A fast algorithm based on a sequential network simplex
method was proposed for simultaneously optimizing the power/
ground widths and lengths of wire segments under reliabil-
ity and power dip/ground bounce constraints. Experimen-
tal results have shown that the proposed method can solve
problems with hundreds of thousands of variables within a
few minutes. Our method also results in solutions 25 times
faster over the sequential linear programming approaches.
Experimental results also show that the original area can be
reduced by about over 50%.
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