
ConvexSmooth: A simultaneous convex fitting and
smoothing algorithm for convex optimization problems

Sanghamitra Roy and Charlie Chung-Ping Chen
Department of Electrical and Computer Engineering

University of Wisconsin-Madison
1415 Engineering Drive, Madison,WI-53706

{roy1@, chen@engr}.wisc.edu

ABSTRACT
Convex optimization problems are very popular in the VLSI
design society due to their guaranteed convergence to a global
optimal point. Table data is often fitted into analytical forms
like posynomials to make them convex. However, fitting the
look-up tables into posynomial forms with minimum error it-
self may not be a convex optimization problem and hence ex-
cessive fitting errors may be introduced. In recent literature
numerically convex tables have been proposed. These tables
are created optimally by minimizing the perturbation of data
to make them numerically convex. But since these tables are
numerical, it is extremely important to make the table data
smooth, and yet preserve its convexity. Smoothness will en-
sure that the convex optimizer behaves in a predictable way
and converges quickly to the global optimal point.

In this paper, we propose to simultaneously create optimal
numerically convex look-up tables and guarantee smoothness
in the data. We show that numerically ”convexifying” and
”smoothing” the table data with minimum perturbation can
be formulated as a convex semidefinite optimization problem
and hence optimality can be reached in polynomial time.

We present our convexifying and smoothing results on in-
dustrial cell libraries. ConvexSmooth shows 14X reduction
in fitting error over a well-developed posynomial fitting al-
gorithm.

1. INTRODUCTION
Convex optimization problems are very popular in the

VLSI design society due to their guaranteed convergence
to a global optimal point[2], [5], [6], [7]. While optimizing
tabular data such as gate delay, significant fitting efforts are
required to obtain an analytically explicit convex functional
form such as posynomials to closely represent the look-up
table data with minimum error [2], [5]. However, fitting the
look-up tables into posynomial forms with minimum error
itself may not be a convex optimization problem and hence
excessive fitting errors may be introduced. Fitting methods
such as K-mean algorithms [12] reduce the fitting errors, but
still do not guarantee optimality. Generalized posynomial
form [2] does not solve this issue.

Alternatively, we can directly use the look-up table data
which can be generated experimentally (for example by run-
ning SPICE simulation) [1]. Using finite difference method,
we can still obtain sensitivity and even hessian which are
sufficient for optimization usage. However, as pointed out
in [2], this method is not capable of ensuring convexity and
smoothness required to ensure quick global convergence. As

a result, it is necessary to modify the data such that both
convexity and smoothness properties can be guaranteed. In
fairly recent literature numerically convex tables have been
proposed [15]. These tables are created optimally by mini-
mizing the perturbation of data to make them numerically
convex. But since these tables are numerical, it is extremely
important to make the table data smooth, and yet preserve
its convexity. Smoothness will ensure that the convex op-
timizer behaves in a predictable way and converges quickly
to the global optimal point. The smoothing technique pro-
posed in [15] cannot guarantee continuous differentiability,
nor can it preserve the convexity of the data.

In this paper, we propose to simultaneously create optimal
numerically convex look-up tables and guarantee smooth-
ness in the data, without explicit analytical form. Smooth-
ness in the table data will enable the convex optimizer to
converge predictably. We show that numerically ”convexi-
fying” and ”smoothing” the table data with minimum per-
turbation can be formulated as a convex semidefinite opti-
mization problem and hence optimality can be reached in
polynomial time. Without an explicit form limitation, we
find that the fitting error is significantly reduced while the
convexity and smoothness is still ensured. As a result, con-
vex optimization algorithms can be applied.

We present our convexifying and smoothing results on in-
dustrial cell libraries. ConvexSmooth shows 14X reduction
in fitting error over a well-developed posynomial fitting al-
gorithm. Note that the terms like ’AN2’, ’ANB2’, ’INV’,
’NR2’ that will be used at several places in the paper re-
fer to cell names from the standard cell library used in our
experiments.

The organization of the paper is as follows. In Section 2
we provide some general background on convexity, smooth-
ness and semidefinite programming. We briefly survey the
ConvexF it formulation and smoothness technique from [15]
in sections 3.1 and 3.2. We also discuss the disadvantages
of this technique. We propose our ConvexSmooth problem
formulation in 3.3. In section 4 we provide experimental re-
sults of ConvexSmooth on industrial cell libraries. We also
compare our results with PosynomialF it, our posynomial
modelling technique. We conclude our discussion in section
5.

2. FUNDAMENTAL CONCEPTS
In this section, the fundamental concepts of convexity,

smoothness and semidefinite programming is introduced.

2.1 Convexity, Hessian, and Smoothness



We now introduce the definition of a convex function. A
function f(x) is convex if

f( (1 − λ)a + λb) ≤ (1 − λ)f(a) + λf(b)

∀a, b ∈ DOMf, and ∀λ ∈ (0, 1)

If f(x) is 2nd-order differentiable then f(x) is convex if and
only if ∇2f(x) � 0 for all x ∈ DOMf , where ∇2f(x) is the
Hessian of f(x), denoted as H(x) and is defined as

[H(x)]ij = [∇2f(x)]ij =
∂2f(x)

∂xi∂xj
, i, j = 1 . . . n

and ∇2f(x) � 0 means the Hessian of f(x) is positive semidef-
inite, i.e. all the eigenvalues of the Hessian are greater or
equal to zero. In a convex function, every local minimizer is
also a global minimizer.

A smooth function is one that is infinitely differentiable, or
has derivatives of all finite orders. A function is called C1 if
it has a derivative that is a continuous function. Such func-
tions are also called continuously differentiable. For quick
and guaranteed convergence to a global optimal point, a
convex function must be at least continuously differentiable.
Smoothness ensures that the function is free from kinks and
jumps and helps algorithms to make good choice for search
directions.

2.2 Semidefinite Programming
Now we introduce semidefinite programming which will

be used to solve our optimization problem. A semidefinite
program (SDP) is an optimization problem of the form:

SDP: minimize C • X

s.t. Ai • X = bi ,i=1,...,m,

X � 0 ,

The objective function is the linear function C •X and there
are m linear equations that X must satisfy, namely Ai•X =
bi , i = 1, ..., m. The variable X also must lie in the (closed
convex) cone of positive semidefinite symmetric matrices.

If C(X) is a linear function of X, then C(X) can be writ-
ten as C • X, where

C • X =
n∑

i=1

n∑

j=1

CijXij . (1)

We now introduce the primal form (P ) and the dual form
(D) of SDP :

(P ) minimize

nb∑

j=1

〈Cj , Xj〉

subject to

nb∑

j=1

〈Ai,j , Xj〉 = bi,

i = 1, ..., m, Xj ∈ Kj (2)

(D) maximize
m∑

i=1

biyi

subject to
m∑

i=1

Ai,jyi + Sj = Cj ,

j = 1, ..., nb, Sj ∈ Kj (3)

where each cone Kj is a set of symmetric positive semidefi-
nite matrices.

3. CONVEX FITTING PROBLEM FORMU-
LATION

In this section, we briefly discuss the minimum-error con-
vex fitting problem and smoothing technique proposed in
[15].

3.1 Convex Fitting Problem Formulation
We now illustrate the minimum-error convex fitting prob-

lem formulation. We then propose our problem formulation
for ConvexSmooth in subsection 3.3

Given an analytical or numerical function g(x), let f(x)−
g(x) = δ′(x), then δ′(x) is the perturbation of g(x), the task
of ConvexF it is to minimize the perturbation of g(x) to
make the hessian of f(x) positive semidefinite. The minimum-
error convex fitting problem is defined as follows:

ConvexF it :

minimize
∑

x∈DOMg

| δ′(x) |

subject to ∇2(g(x) + δ′(x)) � 0,

x ∈ DOMg

Since | δ(x) | is not a linear function of x , −δ(x) ≤
δ′(x) ≤ δ(x) is used, where δ(x) ≥ 0. Under this transfor-
mation, the following formulation is obtained:

ConvexF it′ :

minimize
∑

x∈DOMg

δ(x)

subject to ∇2(g(x) + δ′(x)) � 0,

−δ(x) ≤ δ′(x) ≤ δ(x),

δ(x) ≥ 0,

x ∈ DOMg (4)

Since the domain of interests of g(x), or DOMg(x), is
often finite, we can use a finite difference scheme to ap-

proximate the sensitivity and hessian of g(x) by ∂g(x)
∂xi

∼=
g(x+∆ ei)−g(x−∆ ei)

2∆
and [∇2g(x)]ij = ∂2g(x)

∂xi∂xj

∼=
g(x+∆ ei+∆ ej)−g(x−∆ ei+∆ ej)−g(x+∆ ei−∆ ej)+g(x−∆ ei−∆ ej)

4∆∆
,

where ei is a vector with one in ith entry and zero in others.

3.2 Smoothing of ConvexFit
Here we briefly discuss the smoothing of ConvexF it and

its disadvantages. We then propose a new problem formula-
tion in 3.3 to solve the inherent problems of this technique.

Let f be a discrete function of x = [x1, x2, ..., xn]T . The
following quadratic form is used to generate smooth data
values of f at intermediate points x′ = x + ∆x.

f(x + ∆x) =
1

2
∆xT Hf (x)∆x + ∆xT b + C

where C = f(x) , b = [∂f(x)
∂x1

, ∂f(x)
∂x2

, ..., ∂f(x)
∂xn

]T and Hf is
the Hessian of f .

An n-dimensional space is divided into hypercubes. Each
point (x1, x2, .., xn) not on the boundary of the hypercubes,
has 2n surrounding points. The smoothing algorithm uses
the surrounding 2n points to approximate the value at point
(x1, x2, .., xn). These points are labeled as (x1l, x2l, ....),



(sl , ll , cl)

(sl , lu , cu) (su , lu , cu)

(su , ll , cu)

  sw  =   (su-s)  / (su-sl)
  cw  =  (cu-c) / (cu-cl)
  lw   =  (lu-l)  /  (lu-ll)

(s , l , c)

(sl , lu , cl)

(sl , ll , cu)

(su , lu , cl)

(su , ll , cl)

Figure 1: ConvexFit Smoothing for 3-dimension

(x1u, x2l, ....), (x1l, x2u, ....), (x1u, x2u, ....).... where x1l < x1 <
x1u, x2l < x2 < x2u, ... and so on.

Weight x1w = (x1u − x1)/(x1u − x1l). Similarly, weight
x2w, x3w, ...xnw. The product (x1w × x2w × x3w ... × xnw) is
used as the weight of point (x1l, x2l, x3l, ...., xnl) . Similarly
((1−x1w) × x2w × x3w ...× xnw) is used as weight of point
(x1u, x2l, x3l, ..., xnl) and so on. The sum

∑
(value×weight)

is used as the smoothed value of point (x1, x2, .., xn). Figure
1 illustrates the weight calculation for 3-dimensional space.

−6 −5 −4 −3 −2 −1−4−20
0

0.2

0.4

0.6

0.8

1

Cell−rise Vs slew, load

−6 −5 −4 −3 −2 −1
−4−3−2−10

0

0.5

1

1.5

Convexified and smoothed by ConvexFit

Figure 2: Original data and Smoothing by Convex-
Fit for cell INV

This smoothing algorithm has many disadvantages. Firstly
it adds additional data points by interpolation to an existing
numerically convex data (from 3.1 ). There is no guarantee
that the new points will preserve the convexity of the origi-

nal data, as no such constraint is imposed on the new data
points. Also the interpolated data points may not make the
table sufficiently smooth, or in other words the continuous
differentiability cannot be guaranteed from this smoothing
technique. Fig. 2 illustrates the model for cell INV which is
convexified and then smoothed by the above technique. It
can be seen that smoothing does not preserve the convexity
of the convexified model. We now propose an algorithm by
which the numerical model will converge to a continuously
differentiable convex model.

3.3 Converging to a continuously differentiable
model by ConvexSmooth

In a convex optimization problem, the optimizer needs a
smooth continuously differentiable convex model to gradu-
ally reach the global optimal point. At first we introduce
a term NSI or non-smoothness index. NSI for a discrete
function f(x) is defined as

NSI(f) = max | ∇if(x) −∇if(y) |,
i ∈ [1, 2, ....., n],

x,y ∈ adj pnts in DOMf

The smaller the value of NSI , the higher is the smooth-
ness in a curve. ε the maximum allowable non-smoothness
will be an input to our algorithm. We now formulate our
optimization problem to ensure continuous differentiability
in addition to convexity.

• Strategic addition of points

Let g be a discrete function of x = [x1, x2, ..., xn]T .
We check all pairs of adjacent data points. When |
∇ig(x) − ∇ig(y) |> ε for adjacent points x,y for a
given ε > 0, we introduce additional points between
x,y. We use quadratic interpolation to generate data
values of g at intermediate points x′ = x + ∆x.

g(x + ∆x) =
1

2
∆xT Hg(x)∆x + ∆xT b + C

where C = g(x) , b = [∂g(x)
∂x1

, ∂g(x)
∂x2

, ..., ∂g(x)
∂xn

]T and Hg

is the Hessian of g.

• Perturb data to make it continuously differen-
tiable

Let g′(x′) be the new function with the additional
points generated from the above step. We now intro-
duce perturbation in g′(x′) to make it continuously dif-
ferentiable and also make the hessian of the perturbed
function positive semidefinite. Let f ′(x′) − g′(x′) =
φ′(x′), φ′(x′) being the perturbation. The problem is
formulated below:

ConvexSmooth :

minimize
∑

x∈DOMg | φ′(x) |
subject to ∇2(g′(x′) + φ′(x′)) � 0,

−ε < ∇if
′(x′) −∇if

′(y′) < ε,

i ∈ [1, 2, ....., n],

∀ x′,y′ ∈ adj pnts in DOMf ′,

for given ε > 0, (5)



Again the nonlinear function | φ′(x) | can be trans-
formed by the following formulation

ConvexSmooth′ :

minimize
∑

x∈DOMg φ(x)

subject to ∇2(g′(x′) + φ′(x′)) � 0,

−φ(x′) ≤ φ′(x′) ≤ φ(x′),

−ε < ∇if
′(x′) −∇if

′(y′) < ε,

i ∈ [1, 2, ....., n],

∀ x′, y′ ∈ adj pnts in DOMf ′,

for given ε > 0, (6)

−5

0

−4

−2

0
0

0.5

1

Cell−rise Vs slew, load

−6 −4 −2 0
−4

−2

0
0

0.5

1

Convexsmooth model 

−7
−6

−5
−4

−4

−2

0
0

0.1

0.2

Cell−rise Vs slew, cap

−7
−6

−5
−4

−4

−2

0
0

0.1

0.2

ConvexSmooth model

Figure 3: Plot of original data and ConvexSmooth
model for cell INV

Hence now we get a numerically convex data model which
is also sufficiently smooth. Figure 3 illustrates the model
developed from our algorithm. The ConvexSmooth′ for-
mulation can be easily fitted into the dual form (D) of
semidefinite programming framework [3]. Since semidefi-
nite programming is a convex optimization problem, the
ConvexSmooth′ problem can be optimally solved by any
semidefinite programming solver. The topic of shape pre-
serving interpolation and smoothing of a numerical model
is an open area of research. We plan to explore some more
intricate and accurate techniques in this area in our future
work.

3.4 Posynomial Fitting Procedure for com-
parison

We compare ConvexSmooth with the posynomial mod-
elling technique. We briefly describe posynomial modelling
and our approach here.

The posynomial modelling procedure is essentially done
via least-square regression analysis on the cell data. The
posynomial parametric regression problem can be formally
defined as follows:

PosynomialF it : minimize

z∑

m=1

((

km∑

j=1

cj

n∏

i=1

xmi
αij ) − bm)2

subject to cj ≥ 0 (7)

where z is the number of sets of tunable parameters , n is
the number of tunable parameters which affect the metric
being approximated, xmi ∈ 
 is the ith entry of the mth set
of tunable parameters, bm ∈ 
 is one of z different values
from the cell look-up table each corresponding to the mth

set of tunable parameters. km, cj , and αij are the unknown
parameters we are trying to determine.

If the exponents, αij , are already known, the problem
of PosynomialF it is a convex least square fitting problem
which can be optimally solved by any convex solver. When
the exponents are unknown, the problem is not in any known
convex form. Therefore, the convexity of the problem is
not guaranteed. There is, however, one special case. When
there is only one term in the posynomial, it degenerates into
monomial form which can be solved optimally. This can be
seen by taking a logarithm on both sides of the equation.

Approach - 1-Phase Posynomial Characterization with
unknown Exponents and Unknown Coefficients: Select and
fix a number of monomial terms to use in the characteriza-
tion process. Determine the unknown coefficients and un-
known exponents for the posynomial expression using least-
square fitting. The following is an example of a posyno-
mial for cell AN2 obtained by using this approach: cell rise
posynomial for pin = I1 is:

0.00014 × (slew)0.0049 × (load)0.8783 × (cap)−1.7592

+0.00598 × (slew)−0.3466 × (load)−0.5262 × (cap)0.6315

+0.51642 × (slew)0.6948 × (load)2.1138 × (cap)2.4264

+6.0844 × (slew)0.3135 × (load)−0.0656 × (cap)0.8093

+8.18 × 10−10 × (slew)2.4264 × (load)−0.2173 × (cap)−1.4685

Table 1: Cell-Rise Fitting Errors Comparison

Cell name
PosynomialFit ConvexSmooth

SE AE SE AE
(ns)2 (ns) (ns)2 (ns)

AN2 0.883 0.035 0.232 0.011
AO22 8.892 0.117 0.875 0.026

AOI222 9.214 0.137 0.187 0.010
INV 9.427 0.087 0.052 0.004

MAOI1 8.100 0.125 0.403 0.018
MUX4 5.900 0.108 0.032 0.005

NR4 3.213 0.088 0.097 0.007
OA12 3.523 0.084 0.348 0.013

OR3B2 4.009 0.087 0.578 0.016
XOR2 2.537 0.064 1.504 0.025

4. EXPERIMENTAL RESULTS ON INDUS-
TRIAL CELL LIBRARY

In this section, we first introduce how to apply ConvexSmooth
to a popular industrial cell library to generate convex delay
and transition time models. Next, we present the experi-
mental comparison between PosynomialF it and ConvexSmooth



algorithms. Then we discuss the tradeoff between smooth-
ness and execution time.

4.1 Applying ConvexSmooth in generating stan-
dard cell delay models

Our ConvexSmooth formulation (6) can be easily applied
to model standard cell delay look-up tables. Let us denote
our lookup table, cell rise time as f(s, c, l), a function of in-
put slew s, input capacitance c, and output load l. We have
to introduce minimum perturbation in the cell rise values to
make them purely convex and smooth. The perturbed func-
tion obtained by running ConvexSmooth is our generated
delay model for the standard cells.

Table 2: Cell-Fall Fitting Errors Comparison

Cell name
PosynomialFit ConvexSmooth

SE AE SE AE
(ns)2 (ns) (ns)2 (ns)

AN2 0.130 0.013 0.049 0.004
AO22 1.161 0.043 0.070 0.008

AOI222 1.689 0.064 0.067 0.008
INV 1.768 0.039 0.022 0.003

MAOI1 1.017 0.048 0.469 0.024
MUX4 0.926 0.046 0.067 0.006

NR4 0.681 0.052 0.017 0.004
OA12 0.506 0.029 0.049 0.003

OR3B2 1.274 0.053 0.043 0.006
XOR2 0.395 0.029 0.078 0.004

Table 3: Rise-Transition Fitting Errors Comparison

Cell name
PosynomialFit ConvexSmooth

SE AE SE AE
(ns)2 (ns) (ns)2 (ns)

AN2 4.818 0.083 2.845 0.043
AO22 44.886 0.263 5.46 0.070

AOI222 52.601 0.352 2.01 0.041
INV 42.715 0.184 0.546 0.016

MAOI1 39.820 0.286 2.06 0.055
MUX4 33.874 0.279 0.200 0.012

NR4 17.178 0.219 1.013 0.027
OA12 18.054 0.169 2.618 0.048

OR3B2 22.853 0.216 3.499 0.049
XOR2 16.216 0.169 0.863 0.015

4.2 Comparison of PosynomialFit and Con-
vexSmooth

We now present the experimental results of ConvexSmooth
and PosynomialF it on a real industrial cell library. It is a
0.13µm family standard cell library containing 415 generic
core cells and 53 I/O cells. We performed our experiments
using 67 combinational cells from this library. We have used
the DSDP5.7 [3] solver in C to run our semidefinite optimiza-
tion ConvexSmooth. PosynomialF it was implemented in
C++ using the CFSQP solver [4]. All the procedures were
performed after logarithmically transforming the data points
in the lookup table. The number of monomial terms km

in PosynomialF it was fixed to 5. All experiments were
performed on a PC with 1.40GHz Microprocessor, 1.00 GB
RAM and 40 GB hard drive running Windows XP. Exper-
iments were performed for cell-rise, cell-fall, rise-transition
and fall-transition look-up tables for each cell, and for one in-
put pin per cell. Tables 1, 2, 3, 4 summarize the total square

error(SE) and the average absolute error(AE) for the four
different look-up tables(results for only ten cells are shown
due to limitation of space). SE is calculated by summing
the square of the error for each data point in the look-up
table. AE is calculated by summing the absolute error for
each data point in the look-up table, and then dividing by
the total number of data points. It can be observed that
ConvexSmooth shows more than 14X reduction in fitting
error over PosynomialF it and yet it can guarantee convex-
ity and sufficient smoothness.

Table 4: Fall-Transition Fitting Errors Comparison

Cell name
PosynomialFit ConvexSmooth

SE AE SE AE
(ns)2 (ns) (ns)2 (ns)

AN2 0.854 0.042 0.141 0.008
AO22 5.531 0.089 0.565 0.019

AOI222 9.531 0.158 0.058 0.006
INV 5.317 0.066 0.036 0.003

MAOI1 5.218 0.108 0.804 0.029
MUX4 4.306 0.093 0.026 0.004

NR4 2.198 0.075 0.056 0.006
OA12 2.237 0.058 0.203 0.009

OR3B2 7.531 0.124 0.704 0.028
XOR2 2.943 0.069 0.863 0.015

Table 5: Execution times

Mode
ConvexFit ConvexSmooth

167pts 167pts 294pts 546pts 1014pts
(sec) (sec) (sec) (sec) (sec)

Cell-Rise 2 16 46 87 333
Cell-Fall 2 17 48 90 332

Rise-Trans 3 17 41 85 322
Fall-Trans 2 17 45 99 339

4.3 Tradeoff between smoothness and execu-
tion time

Table 5 presents the runtimes of ConvexSmooth for dif-
ferent number of data points per cell. The execution times
are the average execution time per cell in seconds. The col-
umn headings show the average number of data points per
cell. The ConvexF it column shows the execution times for
ConvexF it with the original number of data points. Note
that for the same number of data points, ConvexSmooth
requires higher execution time, as we guarantee smoothness
by additional constraints, as per equation 6. The higher
the number of data points inserted in 3.3 the smaller is the
NSI , and the greater is the smoothness achieved in our
model. But higher data points also increases the execution
time of our algorithm. Figure 4 shows a plot of execution
time against the number of data points for cell INV. It can
be seen that the higher the data points, the higher is the ex-
ecution time. Often depending on the size, complexity and
type of our optimization problem, we may not need more
than 2X/4X additional point addition. Hence the highest
permissible value of ε should be found out for a specific type
of problem to minimize the execution time of modelling.

5. CONCLUSION
Convex optimization has gained popularity due to its ca-

pability to reach global optimum in a reasonable amount of
time. Table data is often fitted into analytical forms like



0 2000 4000 6000 8000
0

2000

4000

6000

8000

# data points

e
xe

cu
tio

n
 t

im
e

 (
se

c)
Cell−rise

0 2000 4000 6000 8000
0

2000

4000

6000

8000

# data points

e
xe

cu
tio

n
 t

im
e

 (
se

c)

Cell−fall

0 2000 4000 6000 8000
0

2000

4000

6000

8000

# data points

e
xe

cu
tio

n
 t

im
e

 (
se

c)

Rise−transition

0 2000 4000 6000 8000
0

2000

4000

6000

8000

# data points

e
xe

cu
tio

n
 t

im
e

 (
se

c)

Fall−transition

Figure 4: Plot of execution time Vs data points for
cell INV

posynomials to make them convex. However, fitting the
look-up tables into posynomial forms with minimum error
itself may not be a convex optimization problem and hence
excessive fitting errors may be introduced. In recent litera-
ture numerically convex tables have been proposed. These
tables are created optimally by minimizing the perturbation
of data to make them numerically convex. But since these
tables are numerical, it is extremely important to make the
table data smooth, and yet preserve its convexity. In this
paper, we propose to simultaneously create optimal numeri-
cally convex look-up tables and at the same time guarantee
smoothness in the data, without explicit analytical form.
We show that numerically ”convexifying” and ”smoothing”
the table data with minimum perturbation can be formu-
lated as a convex semidefinite optimization problem and
hence optimality can be reached in polynomial time. We
present our convexifying and smoothing results on indus-
trial cell libraries. We demonstrate 14X reduction in fitting
error over a well-developed posynomial fitting algorithm.

6. REFERENCES
[1] V.B.Rao, T.N.Trick, and I.N.Hajj, ”A table-driven

delay-operator approach to timing simulation of MOS
VLSI circuits”, in Proceedings of the 1983 International
Conference on Computer Design, pp.445-448, 1983.

[2] Kishore Kasamsetty, Mahesh Ketkar and Sachin S.
Sapatnekar, ”A New Class of Convex Functions for
Delay Modeling and their Application to the Transistor
Sizing Problem”, in IEEE Journal of Solid-State
Circuits, Vol. 37, pp. 521-525, Apr.2002.

[3] Steven J. Benson and Yinyu Ye, ”DSDP5 User Guide -
The Dual-Scaling Algorithm for Semidefinite
Programming”, Technical Report ANL/MCS-TM-255,
February 16, 2005.

[4] C. Lawrence, J.L Zhou and A.L Tits, ”User’s Guide for
CFSQP Version 2.5: A C Code for Solving (Large

Scale) Constrained Nonlinear (Minimax) Optimization
Problems, Generating Iterates Satisfying All Inequality
Constraints”, Technical Report TR-94-16rl, April, 1997.

[5] J. Fishburn and A. Dunlop, ”TILOS: A posynomial
programming approach to transistor sizing”, in
Proceedings of the IEEE International Conference on
Computer-Aided Design,pp.326-328, 1985.

[6] S.S. Sapatnekar, V.B. Rao, P.M. Vaidya, and S.M.
Kang, ”An exact solution to the transistor sizing
problem for cmos circuits using convex optimization”,
in IEEE Transaction on Computer-Aided Design,vol.
12,pp.1621-1634, 1993.

[7] H. Tennakoon and C. Sechen, ”Gate sizing using
lagrangian relaxation combined with a fast
gradient-based pre-processing step”, in International
Conference on Computer-Aided Design,pp.395-402,
2002.

[8] M. Vujkovic and C. Sechen, ”Optimized power-delay
curve generation for standard cell ICs”, in International
Conference on Computer-Aided Design,pp. 387-394,
2002.

[9] S. Boyd and L. Vandenberghe, ”Convex Optimization”,
Cambridge University Press, 2003. J.-M. Shyu, A. L.
Sangiovanni-Vincentelli,

[10] J.M Shyu, A.L Sangiovanni, J.Fishburn, and
A.Dunlop, ”Optimization-based transistor sizing”, in
IEEE Journal of Solid-State Circuits, vol. 23, pp.
400-409, Apr 1988.

[11] N.P Jouppi,”Timing analysis and performance
improvement of MOS VLSI design,” in IEEE
Transactions on Computer-Aided Design,vol. CAD6,
pp.650-665, July 1987

[12] S.Z Selim and M.A Ismail,”K-Means-Type algorithms:
a generalized convergence theorem and characterization
of local optimality,” in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 6, pp.81-87,
January 1984.

[13] D. Sinha and Hai Zhou, ”Gate Sizing for Crosstalk
Reduction under Timing Constraints by Lagrangian
Relaxation,” in Proceedings of the International
Conference on Computer Aided Design, pp. 14-19, 2004.

[14] L. Vandenberghe and S. Boyd,”Applications of
semidefinite programming”, in Applied Numerical
Mathematics, 29:283-299, 1999.

[15] Sanghamitra Roy, Weijen Chen and Charlie
Chung-Ping Chen,”ConvexFit: An Optimal
Minimum-Error Convex Fitting and Smoothing
Algorithm with Application to Gate Sizing”, in
Proceedings of the International Conference on
Computer Aided Design, 2005.


