
ε-Optimal Minimum-Delay/Area Zero-Skew Clock Tree
Wire-Sizing in Pseudo-Polynomial Time∗

Jeng-Liang Tsai, Tsung-Hao Chen
Electrical and Computer Engineering

University of Wisconsin-Madison
1415 Engineering Drive

Madison, WI 53706

{jltsai, tchen}@cae.wisc.edu

Charlie Chung-Ping Chen
†

Graduate Institute of Electronics Engineering &
Department of Electrical Engineering

National Taiwan University
Taipei 106, Taiwan

cchen@cc.ee.ntu.edu.tw

ABSTRACT
In 21st-Century VLSI design, clocking plays crucial roles
for both performance and timing convergence. Due to their
non-convex nature, optimal minimum-delay/area zero-skew
wire-sizing problems have long been considered intractable.
None of the existing approaches can guarantee optimality
for general clock trees to the authors’ best knowledge. In
this paper, we present an ε-optimal zero-skew wire-sizing
algorithm, ClockTune, which guarantees zero-skew with de-
lay and area within ε distance to the optimal solutions in
pseudo-polynomial time. Extensive experimental results show
that our algorithm executes very efficiently in both runtime
and memory usage. For example, ClockTune takes less than
two minutes and 35MB memory to size an industrial clock
tree with 3101 sink nodes within 2% to the optimal solution
on a 533MHz Pentium III PC. Our algorithm can also be
used to achieve useful clock skew to facilitate timing con-
vergence and to incrementally adjust clock tree for design
convergence and explore delay/power tradeoffs during de-
sign cycles. ClockTune is available on the web [13].

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

General Terms
Algorithms

Keywords
Zero-skew, clock tree, wire-sizing, incremental refinement,
ε-optimal, pseudo-polynomial

∗This work was partially supported by the National Science
Foundation under grants CCR-0093309 and CCR-0204468.
†This work was done when the author was at depart-
ment of Electrical and Computer Engineering, University
of Wisconsin-Madison.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’03, April 6–9, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-650-1/03/0004 ...$5.00.

1. INTRODUCTION
As the feature size keeps shrinking and clock frequency

increasing, clock design has come to play a crucial role in de-
termining the chip performance and facilitating timing and
design convergence. First, clock skew directly affects chip
performance in close to a one-to-one ratio since it has to be
counted as cycle time penalty. Second, incremental clock
tree adjustment enables fast design convergence by avoiding
the potentially divergent design iterations [1]. Since designs
are subjected to change on a daily basis, the clock trees
need to be incrementally adjusted accordingly with mini-
mum changes to ensure acceptable clock skew. Third, since
interconnect delay dominates over gate delay, timing plans
often cannot be met due to some physical effects. Recently,
useful-skew [2] concepts have also been widely proposed to
speed up timing convergence in order to compensate for the
timing uncertainties resulting from physical layout. From
the above analysis, it is crucial to develop clock tuning algo-
rithms that can balance clock skew with minimum adjust-
ments. One of the most effective ways to adjust clock skew is
through wire-sizing since it involves minimum routing mod-
ifications.

In [3], discrete wire-sizing for general routing-trees is as-
sumed and a bottom-up dynamic programming approach
is used to propagate optimal wire-sizing combinations to-
ward the root node. The designer can then determine the
wire-sizing by making a tradeoff between delay and power
consumption. In [4] [5], the wire-sizing problem is formu-
lated as optimization problems, in which the maximum de-
lay of each sink node is constrained, and the delay can be
minimized efficiently. These methods perform wire-sizing
without modifying the clock routing, but do not guarantee
zero-skew.

Recent works [6] [7] integrate wire-sizing into the Deferred-
Merging Embedding (DME) algorithm [8], which allow a
zero-skew clock tree to benefit from wire-sizing. However,
the zero-skew property is maintained by moving the merging
points, and the clock routing might be changed to accommo-
date the skew caused by design changes, which might affect
the detail routing and there is no guarantee of optimality for
these algorithms. In conclusion, there is no optimal wire-
sizing algorithm which can guarantee the use of minimum
power or area to simultaneously achieve minimum delay and
zero-skew to the best of authors’ knowledge.

In this paper, we propose a novel wire-sizing algorithm,

ClockTune, which guarantees zero-skew with a given delay
and power consumption solution within ε distance to the op-
timal solution in psuedo-polynominal time. ClockTune first
calculates the feasible delay and capacitance load informa-
tion for each node in a bottom-up fashion. After the desired
delay and capacitance load is chosen from the feasible re-
gion, a wire-sizing is determined in a top-down fashion.

To achieve the ε-optimality we use sampling techniques
to capture the whole design space and prune out infeasible
solutions. Our algorithm takes pseudo-polynomial time, and
experimental results show that our algorithm can efficiently
re-size large clock trees. Although we focus on achieving
zero-skew, ClockTune can also be used to achieve useful-
skew to tackle timing problems.

The rest of this paper is organized as follows. In Section
2, we formulate the problem and introduce the framework
of our algorithm. In Section 3, we derive the formulae and
give more details of the algorithm. Section 4 contains the
complexity and optimality analyses. Experimental results
are shown in Section 6, and Section 7 is our conclusion.

2. PRELIMINARY
Assuming the Elmore delay under π-model [9], the wire-

sizing problem is defined as below.

Problem Definition 1. Minimum-Delay / Area Zero-
Skew Wire-Sizing (min-ZSWS) Problem
Given a clock tree T , find a set of feasible wire widths that
achieves the target delay/area such that the zero-skew con-
straint is satisfied and the area/delay is also minimized.

Table 1 lists the notations used throughout this paper. In
Table 1, Tv is a binary tree. However, if the wire length is al-
lowed to be zero, then any tree structure can be represented
as a binary tree.

Tv A clock tree with given routing rooted at node v
vl The left child of node v
vr The right child of node v
ev The edge between node v and its parent node
lv The length of edge ev

w(ev) The wire width of edge ev

r(ev) The resistance of wire ev , r(ev) = lvr0
w(ev)

c(ev) The capacitance of wire ev , c(ev) = lvw(ev)c0
wm(ev) Minimum feasible wire width for edge ev

wM (ev) Maximum feasible wire width for edge ev

dv Elmore delay from node v to any leaf node in Tv

cv Total down-stream capacitance seen at node v

r0 Wire resistance per µm2

c0 Wire capacitance per µm2

wm Minimum wire width defined by user
wM Maximum wire width defined by user

Table 1: Notations for the min-ZSWS problem

2.1 The concept of DC Region
For most general routing-tree wire-sizing problems, only

the maximum delay is constrained. Due to the convex na-
ture of these problems, bottom-up approaches that keep the
lower-left portion of the delay-area tradeoff curve can solve
these problems optimally. On the contrary, the min-ZSWS
problem is non-convex and the whole design space has to be
kept to solve the problem optimally.

A set of wire widths which makes the clock tree Tv zero-
skew is an embedding. Each embedding determines a pair of

(a) (b) (c)

v v v
D

C

D

C

D

C

Figure 1: DC regions at node v, where v is a (a) leaf
node (b) level-1 node (c) level-2 node

delay value and total capacitance load value of Tv. The for-
mer relates to the clock skew due to process variation, and
the latter is proportional to the dynamic power consump-
tion, Pd = fCV 2.

The entire design space can be captured by mapping all
embeddings on the D-C plane, the X-Y plane with delay
value on Y-axis and capacitance load value on X-axis.

Definition 1. DC Region
The DC region of node v, Ωv = {(dv, cv)}, is a set of points
on the D-C plane which represents all feasible embeddings of
Tv.

The DC region represents the solution space mapped on the
D-C plane. Figure 1 gives examples for different types of
DC regions. For level-2 and above nodes, the optimal solu-
tions lie on the lower-left edge of the DC region. However,
in dealing with the min-ZSWS problem, pruning out sub-
optimal solutions during bottom-up propagation might lead
to failure in finding a solution at the root node. Moreover,
incremental refinement is not possible if only optimal solu-
tion sets are preserved because the optimal solution sets are
likely to become infeasible after design changes. Thus new
algorithms that guarantee optimality and are able to achieve
incremental refinement must be able to capture the whole
DC region.

2.2 Algorithm overview

(a) (b)

1

2

2

3

4 56 7

4

3

1

Figure 2: Illustration of ClockTune (a) the bottom-
up phase (b) the top-down phase

We propose a dynamic programming algorithm, Clock-
Tune, to solve the min-ZSWS problem. ClockTune is com-
posed of two phases. In the first phase, a bottom-up ap-
proach is used to obtain the DC regions of all nodes. In the
second phase, a top-down approach determines the widths
of all wire segments. The dynamic programming algorithm
ClockTune() is given as a pseudocode in Algorithm 1, and
Figure 2 illustrates its procedures.

Algorithm 1 ClockTune(Tv)

Input: a clock tree Tv with given routing rooted at node v
Output: an embedding of Tv

Ωv ← ClockTune DC(Tv)
/* bottom-up construct DC regions, detailed in 3.1 */
Choose (dt, ct) from Ωv

/* choose target delay and capacitance load for Tv */
Call ClockTune Embed(dt, ct, Tv)
/* top-down embedding selection, detailed in 3.2 */

3. ε-OPTIMAL ZERO-SKEW WIRE-SIZING
ALGORITHM

In this section, the details of ClockTune are described.
In 3.1, the procedures to obtain the DC regions of different
types of nodes are examined. It is then followed by the
top-down wire-sizing procedure in 3.2.

3.1 Bottom-up Phase
In this subsection, we first introduce the definition of

branch DC region and the associated
�

operator to facil-
itate our discussion. The calculation of DC regions for each
type of node is then followed.

Definition 2. Branch DC Region
The branch DC region of node v, Ω+

v = {(d+
v , c+

v)}, is a
set of points on the D-C plane which represents all feasible
embeddings of T +

v = {ev ∪ Tv} such that d+
v and c+

v are
the Elmore delay and capacitance load seen at the root node
of T+

v . Ω+
v can be obtained from Ωv by the transformation�

v : � 3 → � 2 described as follows.

d+
v = dv +

lvr0

w(ev)

�
lvw(ev)c0

2
+ cv �

c+
v = cv + lvw(ev)c0,

where (dv, cv) ⊂ Ωv , wm ≤ w(ev) ≤ wM

Definition 3.
�

Operator
The DC region of v can be generated from the branch DC

regions of vl and vr by
�

operator. The operation is defined
as follows:

Ωv = Ω+
vl

�
Ω+

vr
, where

(dv, cv) ⊂ Ωv ⇐⇒ ∃(d+
vl

, c+
vl

) ⊂ Ω+
vl

, (d+
vr

, c+
vr

) ⊂ Ω+
vr

s.t. dv = d+
vl

= d+
vr

, cv = c+
vl

+ c+
vr

.

The
�

operation combines all feasible embeddings with same
delays on both subtrees. Therefore, the DC region of the
root node can be obtained by recursion. To use more accu-
rate delay models such as AWE [10] method, one can use
more complex transformations to obtain Ω+

v from Ωv , or
use a fudge factor approach to approximate the exact delay
and capacitance load [11]. ClockTune DC() is given in Al-
gorithm 2 and the details on how to obtain the DC regions
for each type of nodes are given in the following subsec-
tions.

3.1.1 Leaf Nodes with Zero-Skew and Useful-Skew
Constraints

For a leaf node v, cv is the load capacitance and hence
a constant. If zero-skew is desired, we can set dv to 0 for
all leaf nodes. Ωv = {(dv, cv)} is a single point on the D-
C plane. In designing critical components, time borrowing

Algorithm 2 ClockTune DC(Tv)

Input: a clock tree Tv with given routing rooted at node v
Output: DC regions of all nodes in Tv

if v is a leaf node then
Ωv ← (dv, cv)

else {v is an internal node}
call ClockTune DC(Tvl

)
call ClockTune DC(Tvr)
switch{v}

case level-1 node
obtain Ωv from Ωvl

and Ωvr by 3.1.2
case level-2 node

obtain Ω+
vl

from Ωvl
and Ω+

vr
from Ωvr by 3.1.3

Ωv ← Ω+
vl

�
Ω+

vr

case level-3 or above node
obtain Ω+

vl
from Ωvl

and Ω+
vr

from Ωvr by 3.1.4

Ωv ← Ω+
vl

�
Ω+

vr

end switch
end if

between consecutive logic blocks is achieved by useful-skew.
Useful-skews are often considered in the early design stage,
however, they might also be used to fix the timing prob-
lems for free. For example, if there is a path timing fail-
ure but there are still timing budgets left in the prior or
next stage, useful-skews can be introduced to fix the timing
problem. Although our focus is on the min-ZSWS prob-
lem, ClockTune can accept arbitrary skew values by simply
assigning a different dv to each leaf node and find an em-
bedding if it exists. This is because ClockTune operates on
DC regions, and whether the leaf nodes require zero-skews
or useful-skews does not make any difference. ClockTune
can also be extended to accept bounded-skew constraints,
where Ωv becomes a vertical segment. If intentional skew is
desired, [2] [12] can be used for initial routing.

3.1.2 Level-1 Nodes
A level-1 node v has two leaf children, vl and vr. We know

that

d+
vl

= dvl
+

l2vl
r0c0

2
+

lvl
r0cvl

w(evl
)

(1)

d+
vr

= dvr +
l2vr

r0c0

2
+

lvrr0cvr

w(evr)
. (2)

Observing zero-skew and wire width constraints, we have
the following equations.

dv = d+
vl

= d+
vr

(3)

wm ≤ w(evl
) ≤ wM (4)

wm ≤ w(evr) ≤ wM (5)

From (1)(2)(3), we can derive the relation between w(evl
)

and w(evr).

w(evr) =
lvr r0cvr

(dvl
−dvr)+

r0c0
2

(l2vl
−l2vr

)+
lvl

r0cvl
w(evl

)

(6)

Thus, Ωv = {(dv, cv)} can be written with a single variable

w(evl
) as

dv(w(evl
)) = dvl

+
l2vl

r0c0

2
+

lvl
r0cvl

w(evl
)

, (7)

cv(w(evl
)) = cvl

+ cvr + lvl
w(evl

)c0 +

l2vr
cvr r0c0

(dvl
− dvr) + r0c0

2
(l2vl
− l2vr

) +
lvl

r0cvl

w(evl
)

. (8)

From (4) (5) (6), the range of w(evl
) and w(evr) are

max

�
lvr r0cvr

(dvl
− dvr) + r0c0

2
(l2vl
− l2vr

) +
lvl

r0cvl

wm

, wm � =

wm(evr) ≤ w(evr) ≤ wM (evr) =

min

�
lvrr0cvr

(dvl
− dvr) + r0c0

2
(l2vl
− l2vr

) +
lvl

r0cvl

wM

, wM � ; (9)

max

�
lvl

r0cvl

(dvr − dvl
) + r0c0

2
(l2vr
− l2vl

) +
lvr r0cvr

wm

, wm � =

wm(evl
) ≤ w(evl

) ≤ wM (evl
) =

min

�
lvl

r0cvl

(dvr − dvl
) + r0c0

2
(l2vr
− l2vl

) +
lvr r0cvr

wM

, wM � . (10)

From (7) (8), the first derivative is always negative for dv

and always positive for cv, thus

dv(wM (evl
)) ≤ dv ≤ dv(wm(evl

)), (11)

cv(wm(evl
)) ≤ cv ≤ cv(wM (evl

)). (12)

Equations (7) (8) with boundary conditions (11) (12) com-
pletely capture Ωv .

3.1.3 Level-2 Nodes

(a) (b)

vv

D

C

D

C

D

C

D

C

D

C

D

C

Figure 3: DC regions of Level-2 nodes

As shown in Figure 3, the DC regions of level-2 nodes
become more complex and are difficult to solve analytically.
To overcome this problem, we use line sampling technique
to calculate and store the DC region for level-2 and above
nodes. The first step is to find out the upper and lower delay
bounds of Ωv.

Calculate Delay Range
A Level-2 node v has at least one level-1 child. Assuming

vl is a level-1 node and wa = w(evll
), Ω+

vl
can be derived

from (7)(8) as

d+
vl

(w(evl
), wa) = dvl

(wa) +
l2vl

r0c0

2
+

lvl
r0cvl

(wa)

w(evl
)

(13)

c+
vl

(w(evl
), wa) = cvl

(wa) + lvl
w(evl

)c0. (14)

Equation (13) describes a delay surface which is strictly de-
creasing along w(evl

) direction(∂d+
vl

/∂w(evl
) < 0), and is a

convex function along wa direction(∂2d+
vl

/∂w2
a > 0). The

maximum delay could be at two corners as specified in (15).
The minimum delay could be at two corners or the mini-
mum of the convex function, if the minimum is within the
defined rectangle, as specified in (16).

d+
vl,max = max(d+

vl
(wm, wm(evll

)), d+
vl

(wm, wM (evll
))),(15)

d+
vl,min = min � d+

vl
(wM , wm(evll

)), d+
vl

(wM , wM (evll
)),�

d+
vl

(wM , wa) �����
dd+

vl
(wM ,wa)

dwa
= 0

wm(evll
) ≤ wa ≤ wM (evll

) ��� . (16)

Equation (16) would lead to a fourth-order equation that
can be solved using iterative equation solvers such as GNU
Scientific Library. The delay range of Ω+

vr
can be calculated

in the same way, or by (2)(5) if vr is a leaf node.
Level-2 Nodes with Two Level-1 Children

For a level-2 node with two level-1 children, it is difficult to
merge the branch DC regions described by complex equa-
tions with the

�
operator. We choose to use line sampling

technique to overcome the problem. By taking delay sam-
ples from {d+

vl
∩ d+

vr
} and calculating the range of c+

vl
and

c+
vr

for each sample, Ωv can be obtained by merging sampled
Ω+

vl
and Ω+

vr
.

The maximum and minimum of dv in Ωv, dv,min and
dv,max, can be obtained from 3.1.3. Assuming that the set of
p delay samples between dv,min and dv,max is Dv = {di

v, i =
1...p}, and substituting di

v back to (13), we have

w(evl
)i =

lvl
r0cvll

(wa)

di
v − dvll

(wa)−
l2vl

r0c0

2

. (17)

Combined with (4) (14), the range of c+i
vl

can be derived.
Again, we apply sampling technique on wa because the range
is difficult to solve analytically.

Assuming that the set of q wire width samples between
wm(evll

) and wM (evll
) is Wv = {waj , j = 1...q}, for each

delay di
v, we substitute waj back to (13) and get

w(evl
)i
j =

lvl
r0cvll

(waj)

di
v − dvll

(waj)−
l2vl

r0c0

2

. (18)

Substitute waj and w(evl
)i
j into (14), we have

c+i
vlj

= cvll(waj) + lvl
w(evl

)i
jc0. (19)

The intervals c+i
vlj sweep through give the range of c+i

vl
. If

we sample the delay evenly, the sampled DC region can be
written as

Ωvs = {(di
v , ci

v), i = 1...p},

where di
v = dv,min +

(i − 1)

(p− 1)
(dv,max − dv,min) (20)

c+i
vl,min + c+i

vr ,min ≤ ci
v ≤ c+i

vl,max + c+i
vr ,max.

There might be more than one range for c+i
vl

and c+i
vr

, and
all combinations should be considered. However, the ranges
will quickly merge together as the DC regions propagate
toward the root node.

Level-2 Nodes with One Leaf Child
For level-2 nodes with level-1 child on the left and leaf child

on the right, Ω+
vl

and Ω+
vr

can be obtained by the method in
3.1.3, (2) (5) respectedly. The merging procedure remains
the same, except that c+i

vr
can be solved directly.

3.1.4 Level-3 and Above Nodes
The merging process described in 3.1.3 can also be applied

to level-3 and above nodes. Assuming that the DC region
of the left child is in sampled form. By combining (1) and
(20), we get

d+k
vl

= dk
vl

+
l2vl

r0c0

2
+

lvl
r0c

k
vl

w(evl
)

, k = 1...p′ (21)

c+k
vl

= ck
vl

+ lvl
w(evl

)c0, k = 1...p′, (22)

where wm ≤ w(evl
) ≤ wM and p′ is the number of delay

samples in Ωvls. Thus,

d+
vl,max = max

���
d+k

vl ���� w(evl
) = wm

k = 1...p′ � � (23)

d+
vl,min = min

���
d+k

vl ���� w(evl
) = wM

k = 1...p′ � � , (24)

and d+
vr ,max, d+

vr,min can be obtained in the same way. Tak-

ing a set of sampled delay, Dv = {di
v, i = 1...p}, from

{d+
vl
∩ d+

vr
} and substituting di

v into (21), we have

w(evl
)i
k =

lvl
r0c

k
vl

di
v − dk

vl
−

l2vl
r0c0

2

, k = 1...p′. (25)

Substituting (25) into (22), we get

c+i
vlk

= ck
vl

+
l2vl

r0c0c
k
vl

di
v − dk

vl
−

l2vl
r0c0

2

=
(di

v − dk
vl

+
l2vl

r0c0

2
)

(di
v − dk

vl
−

l2vl
r0c0

2
)
ck
vl

, k = 1...p′. (26)

Thus c+i
vl

can be calculated by overlapping the p′ intervals

from (26), and Ω+
vls = {(d+i

vl
, c+i

vl
), i = 1...p} is obtained.

Using the same way to obtain Ω+
vrs, Ωvs = Ω+

vls

�
Ω+

vrs can
be obtained.

3.2 Top-Down Phase
The top-down phase is straight-forward. We first select a

pair of target delay and capacitance load values (dt, ct) from
Ωv . Since a point in Ωv represents at least one embedding, it
is guaranteed to find an embedding that achieves the speci-
fied target delay and capacitance load. The capacitance load
is further divided into ctl and ctr such that ctl + ctr = ct,
(dt, ctl) ⊂ Ω+

vl
, and (dt, ctr) ⊂ Ω+

vr
. If vl is a leaf node,

then w(evl
) is determined by (1). If vl is a level-1 node, the

feasible range of w(evl
) can be obtained by (13). If vl is a

level-2 or above node, then the DC region of vl is in sampled
form. For each sample in Ωvls, the range of w(evl

) can be
obtained by (1). Once w(evl

) is chosen and the target delay
and capacitance load of Ωvl

are determined, we can proceed
to determine the wire widths in Tvl

. Same approach applies
to vr. ClockTune Embed() is given in Algorithm 3.

4. OPTIMALITY AND COMPLEXITY
We use sampling techniques to calculate DC regions, and

the embeddings that do not map on the sampled delay will

Algorithm 3 ClockTune Embed(dt, ct, Tv)

Input: a clock tree Tv with given routing rooted at node v
Output: an embedding of Tv

if v is the root node then
choose (dt, ct) from Ωv

end if
choose ctl and ctr such that ctl + ctr = ct, (dt, ctl) ⊂ Ω+

vl
,

and (dt, ctr) ⊂ Ω+
vr

foreach child node u ∈ {vl, vr}
switch u

case leaf node
solve w(eu) by (1)

case level-1 node
solve the range of w(eu) by (13)
choose w(eu) and calculate (du, cu)
call ClockTune Embed(du, cu, Tu)

case level-2 or above node
solve the range of w(eu) for each sample by (1)
choose w(eu) and calculate (du, cu)
call ClockTune Embed(du, cu, Tu)

end switch
end for

not be captured. However, the sampling error can be made
arbitrarily small as we increase the sampling rate. The com-
plexity of our algorithm is O(max(p, q)pn), where n is the
number of nodes, and p, q are the numbers of delay and wire
width samples.

4.1 Optimality Analysis

w

d

p

D

C

Figure 4: Illustration of sampling error components

To analyze the tradeoff between sampling rate and opti-
mality, we first define the distance on the D-C plane and
sampling error, and introduce two properties of errors. We
further analyze the error on different level of nodes and prove
the ε-optimality of ClockTune.

Definition 4. Distance to a DC region
The distance from a point a on the D-C plane to a DC region
Ωv is defined as
dis(a, Ωv) = min({ |a − b||b ∈ Ωv}).

Definition 5. Sampling Error
The error of a sampled DC region Ωvs is defined as

ξ(Ωvs) = max({dis(a,Ωvs)| a ⊂ Ωv}).

The sources of the error of Ωvs are the delay sampling, wire
width sampling, and the sampling error from lower level
nodes. Using the triangle inequality, we can separate these
three components of the sampling error. Figure 4 gives an
example of the property.

Property 1. Error Composition
ξ(Ω+

vls
) ≤ ξp(Ω

+
vls

) + ξd(Ω
+
vls

) + ξw(Ω+
vls), where

ξp(Ω
+
vls) is the propagated error from ξ(Ωvls), ξd(Ω

+
vls) is

the delay sampling error, and ξw(Ω+
vls

) is the additional wire
width sampling error after delay sampling.

Ωv is generated from Ω+
vl

and Ω+
vr

by the
�

operator, which
does not introduce additional errors. Thus we have the fol-
lowing property.

Property 2. Error Bound
The error of a sampled DC region Ωvs is bounded by

ξ(Ωvs) ≤ ξ(Ω+
vls

) + ξ(Ω+
vrs).

4.1.1 Error Propagation
The first source of error comes from lower level nodes.

Rewrite d+
vl

and c+
vl

into matrix form:�
d+

vl

c+
vl � = � 1

lvl
r0

w(evl
)

0 1 � �
dvl

cvl � + � l2vl
r0c0

2
lvl

w(evl
)c0 � . (27)

The spectral norm of the matrix is

λvl
= 1 +

lvl
r0

2wm �� lvl
r0

wm

+ � 4 +

�
lvl

r0

wm
� 2 ��

. (28)

ξp(Ω
+
vl

) being the error propagated from lower level DC re-
gions, we have

ξp(Ω
+
vls

) ≤ λvl
ξ(Ωvls). (29)

The upper bound of ξp(Ω
+
vls

) is determined by the error in
the lower level and λvl

. As the wire length increases, λvl

also increases.

4.1.2 Sampling Error of Level-2 DC Regions
The other sources of error come from the sampling pro-

cess. By fixing wm(evll
) ≤ wa ≤ wM (evll

), (13) (14) form
a subset of Ω+

vl
. The difference between the maximum and

minimum d+
vl

of a given wa is lower bounded by drm =

lvl
r0cvl

(wm(evll
))(1

wm
− 1

wM
). If we make the delay sam-

pling interval δd < drm, at least one point in each subset
of Ω+

vl
is on Ω+

vls. Due to the convex property of subsets of

Ω+
vl

, for every (da, ca) ⊂ Ω+
vl

, we can find a (db, cb) ⊂ Ω+
vls

such that |db − da| < δd and |cb − ca| < δc, where

δc = max

���
δd ����

∂c+
vl

(w(evl
), wa)/∂w(evl

)

∂d+
vl

(w(evl
), wa)/∂w(evl

) �������� wm ≤ w(evl
) ≤ wM

wm(evll
) ≤ wa ≤ wM (evll

) � �
= δd

c0w
2
M

r0cvl
(wm(evll

))
. (30)

Thus the delay sampling error is bounded by

ξd(Ω
+
vls

) ≤ δd � 1 +

�
c0w2

M

r0cvl
(wm(evll

))
� 2

= δdkdvl
. (31)

For delay sample di
v, substitute (17) back to (14), we have

c+i
vl

(wa) = cvl
(wa) + lvl

c0
lvl

r0cvl
(wa)

di
v − dvl

(wa)−
l2vl

r0c0

2

(32)

The error caused by wire width sampling with sampling in-
terval δw is bounded by

ξw(Ω+
vls) ≤ max � � δw �����

dc+i
vl

(wa)

dwa

��������� i = 1...p
wm(evll

) ≤ wa ≤ wM (evll
) � � = δwkwvl

.(33)

For a given clock routing, kwvl
is a constant determined by

cvll
, cvlr

, lvll
, lvlr

, and lvl
only. For level-2 nodes, no error is

propagated from either child, and ξ(Ωvs) ≤ δd(kdvl
+kdvr)+

δw(kwvl
+ kwvr).

4.1.3 Sampling Error at Level-3 and above Nodes

D

C

D

C

Figure 5: The process of obtaining sampled DC-
regions at level-3 and above nodes

The analyses of the error for level-2 nodes and the error
propagation in a clock tree can be used to measure the sam-
pling error at level-3 and above nodes. Figure 5 illustrates
the process of obtaining Ω+

vls. From (21)(22), the slope of

the upper and lower boundaries of {(d+
vlk

, c+
vlk

)} are
lvl

r0

wm

and
lvl

r0

wM
. The minimum slope of left and right boundaries

are
−r0ck

vl,min

c0w2
M

and
−r0ck

vl,max

c0w2
M

. Thus The sampling error is

bounded by the following inequality.

ξd(Ω
+
vls

) ≤ max

�
δd � 1 + 	 wM

lvl
r0
 2

,

�
δd � 1 + 	 c0w2

M

r0ck
vl,min
 2 ���� k = 1...p′ � � = δdk′

dvl
(34)

Again, the delay sampling error is proportional to the sam-
pling interval times a constant related to the given routing.
For level-3 and above nodes, ξw(Ω+

vls) = 0 because no wire
width sampling is done. Thus ξ(Ωvs) ≤ δd(k′

dvl
+ k′

dvr
) +

λvl
ξ(Ωvls) + λvrξ(Ωvrs). The upper bound of the sampling

error at root node can be obtained by recursion, which lead
to the following conclusion.

Theorem 1. ε-Optimality
The ClockTune Algorithm is ε-optimal.

Proof. The upper bound of the total sampling error of
the DC region at root node v can be obtained by the follow-
ing recursion inequality.

ξ(Ωvs) ≤ δd(kdvl
+ kdvl

) + δw(kwvl
+ kwvl

)

+λvl
ξ(Ωvls) + λvrξ(Ωvrs) (35)

By reducing the sampling intervals for delay and wire width
at every node to one kth of the original values, the worst-case
total sampling error can also be reduced to one kth of the
value. The sampling error can be reduced to an arbitrarily
small value; the algorithm is ε-optimal.

4.2 Complexity Analysis
Assuming a clock tree Tv has n nodes, and we always

take p samples for delay and q samples for wire width. In
the bottom-up phase, we need O(1) time to construct the
DC regions for leaf and level-1 nodes. Level-2 nodes re-
quire O(pq) time for delay and wire width sampling. The
other nodes need O(p2) time to combine at most p ranges for
each delay sample. Thus, the complexity for the bottom-up
phase is O(max(p, q)pn). In the top-down phase, each wire
width can be determined in O(p) time, and the complexity is
O(pn). The overall runtime complexity is O(max(p, q)pn).
Since we only need to store the maximum and minimum val-
ues of the capacitance load of each delay sample, the memory
requirement is O(pn). From (35), the required sample num-
bers p, q in achieving the specified accuracy is determined by
some polynomial of the input parameters, thus ClockTune
takes pseudo-polynomial runtime and memory usage.

5. EXPERIMENTAL RESULTS
We implement our algorithm in C++ and run the program

on a 128MB 533Mhz Pentium III PC. The benchmarks r1-
r5 are taken from [9]. In this section, we investigate the
runtime and optimality tradeoff and determine the sampling
rate for reasonable accuracy. An example that demonstrates
the incremental refinement capability of our algorithm is
followed.

5.1 Optimality and Runtime Tradeoff

(a) (b)

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500

p, q = 1024

(min)

(node)

512

256
128 0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500

(MB)

(node)

p, q = 1024

512

256

128

Figure 6: (a) Runtime and (b) memory usage with
difference number of samples

(a) (b)

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

128 256 512 1024

r1

r2

r3

r4

r5

(sample)

0.0%

0.2%

0.4%

0.6%

0.8%

128 256 512 1024

r1

r2

r3

r4

r5

(sample)

Figure 7: (a) Minimum delay and (b) minimum load
error

We set p, q to 128, 256, 512, 1024 in each run and record
the minimum delay and capacitance load of the DC regions.
All simulations use r0 = 0.03, c0 = 2 × 10−16/µm2, and

Figure 8: The DC regions of r5 with (a) p, q = 1024
(b) p, q = 256

acceptable wire width from 1µm to 4µm. We choose the
BB+DME [8] algorithm for routing generation, thus the ca-
pacitance load of the initial routing is the global optimal.
The optimal delay is estimated by nonlinear curve fitting
using (35). Figure 6 shows the runtime and memory usage,
and Figure 7 shows relative errors between minimal and op-
timal delays and loads. The results show that ClockTune is
very efficient. For r5, taking 256 samples is sufficient to find
an embedding within 1% of the optimal solution and the
runtime is less than 6 minutes. For 128 samples, the maxi-
mum error is less than 2% and the runtime is further reduced
to 1.2 minutes while consuming only 34 MB of memory.

Figure 8(a) shows the DC region of r5 with p, q = 256,
and Figure 8(b) with p, q = 1024. When p, q = 256, the
errors are below 1%, thus p, q are fixed to 256 for the rest of
the simulations. Note that all delay values are the Elmore
delay values multiplied by ln2.

Table 2 lists the delay and capacitance load of initial rout-
ings and minimum delay/load embeddings by ClockTune.
On average, ClockTune achieves 3.3X improvement on delay
with only 22% increase on wire capacitance. All embeddings
are verified by SPICE and the maximum skew is 12ps.

5.2 Incremental Refinement

67

3435 53

72

4345

45

31

33

35

70

33

59

43

43

w=2.01
L=15.3

w=2.10
L=24.7

w=1.20
L=24.1

w=1.19
L=15.9

w=1.96
L=19.7

w=1.96
L=20.3

w=1.19
L=15.3

w=1.20
L=24.7

w=2.02
L=16.0

w=2.10
L=24.0

w=1.65
L=26.8

w=1.58
L=13.2

w=1.22
L=18.1

w=1.22
L=21.9

w=1.63
L=19.6

w=1.63
L=20.4

w=1.01
L=22.6

w=1.01
L=24.6

w=1.04
L=21.3

w=1.01
L=27.5

w=2.28
L=54.2

w=2.37
L=47.2

w=1.04
L=18.4

w=1.01
L=23.1

w=1.05
L=16.7

w=1.01
L=24.0

w=2.01
L=40.9

w=1.96
L=58.8

w=3.97
L=49.4

w=3.98
L=61.5

A(0.318,1.055)
B(0.165,0.453)

C(0.047,0.177)

D(0.062,0.236)

E(0.180,0.514)

F(0.064,0.222)

G(0.074,0.245)

33

35

33

49

w=1.06
L=20.7

w=1.01
L=20.3

w=1.36
L=21.1

w=1.01
L=21.9w=1.04

L=18.4

w=1.00
L=23.1

w=2.01
L=58.8

C(0.051,0.176)

3453

72 43w=1.19
L=15.3

w=1.20
L=24.7

w=2.02
L=16.0

w=2.10
L=24.0

w=1.05
L=16.7

w=1.01
L=24.0

w=2.01
L=40.9

w=3.98
L=61.5 B(0.165,0.453)

D(0.062,0.236)

(a) (b)

Figure 9: Routing examples (a) initial routing (b)
incremental refinement for local changes

We will now proceed to show how incremental refinement
is achieved by ClockTune. Figure 9(a) shows a clock routing
with 16 sink nodes. The numbers in the circles are capac-
itance values in fF . Wire width and length are in µm.
The dc-pairs followed by nodes A-G are the delay values in
10−12s and capacitance load values in 10−12F of the current
embedding.

Initial(w = 1µm) ClockTune(1µm ≤ w ≤ 4µm, p=q=256)
Input Nodes Delay Wire Cap. Opt. Delay Min-delay embedding Min-area embedding CPU

(ns) (pF) (Curve fitting) Delay Gain Wire Cap. Increase Delay Wire Cap. (min.)
r1 267 1.097 30.79 0.362 0.364 3.0X 39.42 28.1% 1.090 30.91 0.40
r2 598 3.210 60.98 0.971 0.978 3.3X 75.41 23.7% 3.195 61.23 1.02
r3 862 4.590 79.13 1.374 1.381 3.3X 95.71 20.9% 4.506 79.58 1.66
r4 1903 13.18 161.3 3.806 3.828 3.4X 190.91 18.3% 13.13 162.0 3.37
r5 3101 24.88 242.5 6.945 7.010 3.5X 283.45 16.9% 24.74 243.9 5.65

average 3.3X 21.6%

Table 2: Comparison of initial routings and minimum delay/load embeddings. The gains are measured by
initial delays divided by minimum delays.

Figure 9(b) shows three changes in the upper-right por-
tion of the routing; one of the sink capacitance and the
lengths of two wire segments connecting to sink nodes are
increased. We first re-construct the DC regions for the new
clock routing. Since the dc-pair at node C does not reside in
its new DC region, we could not find an embedding for TC

to achieve the same delay and capacitance load. However,
the dc-pair at node B does fall in its new DC region, we
are able to find an embedding for TB that yields the same
dc-pair while fixing the wire width of BD. By choosing such
an embedding, only BC and the wire segments in TC need
to be re-sized, and the rest of the clock routing were left
intact.

If the designer chooses an optimal or near optimal embed-
ding for the clock routing in the first place, the dc-pairs of
the original embedding are more likely to fall out of the new
DC regions as design changes occur. The changes might re-
sult in re-sizing many wire segments in order to re-balance
the clock routing. In these cases, it might be desirable to
choose a sub-optimal embedding for a subtree of the clock
routing if future modifications are likely to occur. Our algo-
rithm preserves the whole design space on the D-C plane and
allows the designers to choose either optimal or sub-optimal
embeddings depending on design requirements.

6. CONCLUSION AND FUTURE WORK
We present an ε-optimal zero-skew clock tree wire-sizing

algorithm, ClockTune. The algorithm is guaranteed to find
an ε-optimal embedding for the target delay or capacitance
load requirement. For acceptable wire width ranging from
1µm to 4µm, the algorithm achieves 3.3X improvement in
delay with only 22% increase in wire area over the BB+DME
algorithm. The algorithm is also capable of re-balancing the
clock routing by local refinement should design changes oc-
cur. Moreover, the algorithm only takes pseudo-polynomial
runtime and memory usage.

We plan to incorporate wire-sizing and buffer-insertion
simultaneously into our algorithm framework. We will also
investigate the inductance effect and adopt more accurate
delay models in our future work.

7. REFERENCES
[1] Jason Cong and Majid Sarrafzadeh. Incremental

physical design. In Proceedings of the international
symposium on Physical design, 2000, pages 84–92.
ACM Press, 2000.

[2] Joe G. Xi and Wayne W.-M. Dai. Useful-skew clock
routing with gate sizing for low power design. In
Proceedings of the 33rd annual conference on Design
automation conference, pages 383–388. ACM Press,
1996.

[3] John Lillis, Chung-Kuan Cheng, and Ting-Ting Y.
Lin. Optimal wire sizing and buffer insertion for low
power and a generalized delay model. In Proceedings
of the 1995 IEEE/ACM international conference on
Computer-aided design, pages 138–143. IEEE
Computer Society Press, 1995.

[4] Rony Kay, Gennady Bucheuv, and Lawrence T.
Pileggi. Ewa: exact wiring-sizing algorithm. In
Proceedings of the 1997 international symposium on
Physical design, pages 178–185. ACM Press, 1997.

[5] Chung-Ping Chen, Chris C. N. Chu, and D. F. Wong.
Fast and exact simultaneous gate and wire sizing by
lagrangian relaxation. In Proceedings of the 1998
IEEE/ACM international conference on
Computer-aided design, pages 617–624. ACM Press,
1998.

[6] Zhaoyun Xing and Prithviraj Banerjee. A parallel
algorithm for zero skew clock tree routing. In
Proceedings of the 1998 international symposium on
Physical design, pages 118–123. ACM Press, 1998.

[7] I-Min Liu, Tan-Li Chou, Adnan Aziz, and D. F.
Wong. Zero-skew clock tree construction by
simultaneous routing, wire sizing and buffer insertion.
In Proceedings of the international symposium on
Physical design, 2000, pages 33–38. ACM Press, 2000.

[8] Ting-Hai Chao, Yu-Chin Hsu, Jan-Ming Ho, and A.B.
Kahng. Zero skew clock routing with minimum
wirelength. Circuits and Systems II: Analog and
Digital Signal Processing, Volumn 39, Issue
11:799–814, Nov. 1992.

[9] R.-S. Tsay. Exact zero skew. In Proceedings of the
1991 IEEE international conference on
Computer-aided design, pages 336–339, 1991.

[10] Lawrence T. Pillage and Ronald A. Rohrer.
Asymptotic waveform evaluation for timing analysis.
Computer-Aided Design, IEEE Trans. on, Volumn 9,
NO. 4:352–366, Apr. 1990.

[11] Yu-Min Lee, Hing Yin Lai, and Charlie Chung-Ping
Chen. Optimal spacing and capacitance padding for
general clock structures. In Proceedings of the
conference on Asia South Pacific Design Automation
Conference, pages 115–119. ACM Press, 2001.

[12] Kazunori Inoue, Wataru Takahashi, Atsushi
Takahashi, and Yoji Kajitani. Schedule-clock-tree
routing for semi-synchronous circuits. Fundamentals of
Electronics, Communications and Computer Sciences,
IEICE Trans. on, Volumn E82-A, NO. 11:2431–2439,
Nov. 1999.

[13] http://vlsi.ece.wisc.edu/Tools.htm

